首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Unprecedented dual aggregation‐induced emission (AIE) behavior based on a steric‐hindrance photochromic system is presented, with incorporation one or two bulky aryl groups, resulting in different flexibleness. The dual AIE behavior of open and closed isomers can be explained by restriction of intramolecular rotation (RIR), restriction of intramolecular vibration (RIV), and intermolecular stacking. The large bulky benzothiophene causes restricted rotation, enhancing the emission of open form in solution and weak π–π molecular packing, thereby efficiently enhancing the luminescence performance in the solid state. With incorporation of two large bulky benzothiophene groups, BBTE possesses the most outstanding AIE activity, undergoing highly efficient and reversible off‐to‐on fluorescence in film upon alternating UV and visible light irradiation along with excellent fatigue resistance. The off‐to‐on fluorescent photoswitch is successfully established in super resolution imaging.  相似文献   

2.
ABSTRACT

Tetraphenylethylene (TPE) related (supra)molecules have been intensively investigated due to their aggregation-induced emission (AIE) effect based on the restriction of intramolecular rotation (RIR). Meanwhile, boron-dipyrromethene (BODIPY) tends to emit intense fluorescence with high quantum yields. Herein, we combined TPE, BODIPY and terpyridine (TPY) into one system to study the emissive behaviour of organic building block as well as a self-assembled metallo-supramolecule. The TPY and BODIPY substituents with bulky sizes provide strong hindrance to restrict the rotation of the phenyl groups on TPE, leading to enhancement of emissive properties in both solution and aggregation states. Furthermore, the BODIPY-TPE-TPY ligand (L) was assembled with Zn (II) through coordination-driven self-assembly to form a cyclic dimer (D) with typical AIE characteristics.  相似文献   

3.
An efficient and readily scalable thioetherification between 1,1-diphenylethene (DPE) and sodium arylsulfinate was developed for the synthesis of 1,1-diphenylvinylsulfide (DPVS) with the yield up to 99 %. The photophysical properties of DPVS show that the introduction of arylsulfenyl groups onto the parent molecule DPE makes DPVS a novel type of aggregation-induced emission (AIE) luminogen (AIEgen) with large Stoke's shift (up to 188 nm). These DPVS possess AIE properties due to restriction of intramolecular motions (RIM), as demonstrated by crystal structure analysis. Importantly, the AIE performance of DPVS can be applied to sense the nitroaromatic explosive picric acid in aqueous systems through a “turn-off” response.  相似文献   

4.
Aggregation‐induced emission (AIE) has been harnessed in many systems through the principle of restriction of intramolecular rotations (RIR) based on mechanistic understanding from archetypal AIE molecules such as tetraphenylethene (TPE). However, as the family of AIE‐active molecules grows, the RIR model cannot fully explain some AIE phenomena. Here, we report a broadening of the AIE mechanism through analysis of 10,10′,11,11′‐tetrahydro‐5,5′‐bidibenzo[a,d][7]annulenylidene (THBDBA), and 5,5′‐bidibenzo[a,d][7]annulenylidene (BDBA). Analyses of the computational QM/MM model reveal that the novel mechanism behind the AIE of THBDBA and BDBA is the restriction of intramolecular vibration (RIV). A more generalized mechanistic understanding of AIE results by combining RIR and RIV into the principle of restriction of intramolecular motions (RIM).  相似文献   

5.
An efficient and readily scalable thioetherification between 1,1‐diphenylethene (DPE) and sodium arylsulfinate was developed for the synthesis of 1,1‐diphenylvinylsulfide (DPVS) with the yield up to 99 %. The photophysical properties of DPVS show that the introduction of arylsulfenyl groups onto the parent molecule DPE makes DPVS a novel type of aggregation‐induced emission (AIE) luminogen (AIEgen) with large Stoke's shift (up to 188 nm). These DPVS possess AIE properties due to restriction of intramolecular motions (RIM), as demonstrated by crystal structure analysis. Importantly, the AIE performance of DPVS can be applied to sense the nitroaromatic explosive picric acid in aqueous systems through a “turn‐off” response.  相似文献   

6.
The concept of aggregation‐induced emission (AIE) has been exploited to render non‐luminescent CuISR complexes strongly luminescent. The CuISR complexes underwent controlled aggregation with Au0. Unlike previous AIE methods, our strategy does not require insoluble solutions or cations. X‐ray crystallography validated the structure of this highly fluorescent nanocluster: Six thiolated Cu atoms are aggregated by two Au atoms (Au2Cu6 nanoclusters). The quantum yield of this nanocluster is 11.7 %. DFT calculations imply that the fluorescence originates from ligand (aryl groups on the phosphine) to metal (CuI) charge transfer (LMCT). Furthermore, the aggregation is affected by the restriction of intramolecular rotation (RIR), and the high rigidity of the outer ligands enhances the fluorescence of the Au2Cu6 nanoclusters. This study thus presents a novel strategy for enhancing the luminescence of metal nanoclusters (by the aggregation of active metal complexes with inert metal atoms), and also provides fundamental insights into the controllable synthesis of highly luminescent metal nanoclusters.  相似文献   

7.
Biosensing processes such as molecular beacons require non-trivial effort to covalently label or mark biomolecules. We report here a label-free DNA assay system with a simple dye with aggregation-induced emission (AIE) characteristics as the fluorescent bioprobe. 1,1,2,2-Tetrakis[4-(2-bromoethoxy)phenyl]ethene is nonemissive in solution but becomes highly emissive when aggregated. This AIE effect is caused by restriction of intramolecular rotation, as verified by a large increase in the emission intensity by increasing viscosity and decreasing temperature of the aqueous buffer solution of 1,1,2,2-tetrakis[4-(2-triethylammonioethoxy)phenyl]ethene tetrabromide (TTAPE). When TTAPE is bound to a guanine-rich DNA strand (G1) via electrostatic attraction, its intramolecular rotation is restricted and its emission is turned on. When a competitive cation is added to the G1 solution, TTAPE is detached and its emission is turned off. TTAPE works as a sensitive poststaining agent for poly(acrylamide) gel electrophoresis (PAGE) visualization of G1. The dye is highly affinitive to a secondary structure of G1 called the G-quadruplex. The bathochromic shift involved in the G1 folding process allows spectral discrimination of the G-quadruplex from other DNA structures. The strong affinity of TTAPE dye to the G-quadruplex structure is associated with a geometric fit aided by the electrostatic attraction. The distinct AIE feature of TTAPE enables real-time monitoring of folding process of G1 in the absence of any pre-attached fluorogenic labels on the DNA strand. TTAPE can be used as a K+ ion biosensor because of its specificity to K+-induced and -stabilized quadruplex structure.  相似文献   

8.
Full quantum mechanical (FQM) calculation of the excited state of aggregation‐induced‐emission (AIE) materials is highly sought but still a challenging task. Herein, we employed the recently developed electrostatically embedded generalized molecular fractionation (EE‐GMF) method, a method based on the systematic fragmentation approach, to predict, for the first time, the spectra of a prototype AIE fluorophore: di(p‐methoxylphenyl)dibenzofulvene (FTPE). Compared to the single molecular or QM/MM calculations, the EE‐GMF method shows significantly improved accuracy, nearly reproducing the experimental optical spectra of FTPE in both condensed phases. Importantly, we show that the conventional restriction of the intramolecular rotation mechanism cannot fully account for AIE, whereas the two‐body intermolecular quantum mechanical interaction plays a crucial role in AIE.  相似文献   

9.
Restriction of intramolecular motion (RIM), as the working mechanism of aggregation‐induced emission (AIE), cannot fully explain some heteroatom‐containing systems. Now, two excited states are taken into account and a mechanism, restriction of access to dark state (RADS), is specified to elaborate RIM and complete the picture of AIE mechanism. A nitrogen‐containing molecule named APA is chosen as a model compound; its weak fluorescence in solution is ascribed to the easy access from the bright (π,π*) state to the close‐lying dark (n,π*) state. By either metal complexation or aggregation, the dark state is less accessible due to restriction of the molecular motion leading to the dark state and elevation of the dark state energy, thus the bright state emission is restored. RADS is powerful in elucidating the AIE effect of molecules with excited states favoring non‐radiative decay, including overlap‐forbidden states such as (n,π*) and CT states, spin‐forbidden triplet states, and so on.  相似文献   

10.
薛云娜  柴生勇  别国军  刘波  甘宁 《化学学报》2008,66(13):1577-1582
合成并全面表征了一种新的蒽烯类化合物9,10-双[2-(1-甲基-1H-吡咯-2-基)乙烯基]蒽(MPVAn). 该化合物具有显著的聚集诱导发光特性. 它在溶液态时几乎不发光, 但在固态时的光致发光强度达到溶液态的数百倍. 为了确定标题化合物的聚集诱导发光机制, 研究了它在不同溶液粘度及温度下的光致发光行为, 结果表明聚集态发光增强是由于分子内转动受阻所致. 它的粉末在420 nm光的激发下发射纯的黄光, 峰值为562 nm, 半峰宽为66 nm. 采用紫外-可见吸收光谱及循环伏安法研究了化合物的电子性能, 其HOMO和LUMO能级分别为-4.78和-2.28 eV.  相似文献   

11.
Reported herein is a new class of pure polycyclic hydrocarbon molecules, designed through a novel aggregation-induced emission (AIE) strategy, with unexpected photochromic properties. The restriction of intramolecular motion was found as a comprehensive mechanism for the AIE effect. The photochromism mechanism study revealed that the photocyclization reaction of cis-stilbene, the molecular conformation in the single crystal and the tetracene backbone should contribute to the unique photo behavior. In particular, the fast responsive, photo-reversible and thermo-irreversible photochromic effect facilitated in the solid state opens a new field of aggregation-promoted photochromism.  相似文献   

12.
The direct visualization of micelle transitions is a long‐standing challenge owing to the intractable aggregation‐caused quenching of light emission in the micelle solution. Herein, we report the synthesis of a surfactant with a tetraphenylethene (TPE) core and aggregation‐induced emission (AIE) characteristics. The transition processes of surfactant micelles and the microemulsion droplets (MEDs) formed by the surfactant with a TPE core were clearly visualized by a high‐contrast fluorescence imaging method. The fluorescence intensity of the MEDs decreased as the size of MEDs increased as a result of weakening of the restriction of intramolecular rotation (RIR). The results of this study deepen our understanding of micelle‐transition processes and provide solid evidence in favor of the hypothesis that the AIE phenomenon has its origin in the RIR of fluorophores in the aggregate state.  相似文献   

13.
Herein, the trackable supramolecular transformation of a two‐component molecular cage to a three‐component cage through supramolecular fusion with another two‐component molecular square is described. The use of tetraphenylethene (TPE), a chromophore with aggregation‐induced emission (AIE) character, as a component for the molecular cages enables facile fluorescence monitoring of the transformation process: while both cages exhibit fluorescence emission via the restriction of intramolecular motion of the TPE motif, the interactions between TPE and 4,4′‐bipyridine introduced in the supramolecular fusion process result in partial fluorescence quenching and shifts in the emission maximum. This study provides a simple and efficient approach towards complex supramolecular cages with emergent functions and demonstrates that AIE features could provide unique opportunities for the characterization of complex, dynamic supramolecular transformation processes.  相似文献   

14.
The aggregation induced emission (AIE) mechanism of the cyano-substituted oligo (p-phenylenevinylene)1,4-bis [1-cyano-2-(4-(diphenylamino) phenyl) vinyl] benzene (TPCNDSB) is investigated by time resolved fluorescence technique. By reconstructing the time resolved emission spectra (TRES), it is found that in solvent of low polarity, the emission is mainly from the local emission (LE) state with high quantum yield, but in high polarity solvent, the emission is mainly from the intramolecular charge transfer (ICT) state, which is a relatively dark state, with low quantum yield. In crystal form, the restriction of transfer from LE state to ICT state results in efficient AIE.  相似文献   

15.
A new series of acceptor-donor-acceptor (A-D-A) type quinoacridine derivatives (1-3) with aggregation-induced red emission properties were designed and synthesized. In these compounds, the electron-withdrawing 2-(3,5-bis(trifluoromethyl)phenyl)acetonitrile groups act as electron-accepting units, while the alkyl-substituted conjugated core acts as electron-donating units. The restriction of intramolecular rotation was responsible for the AIE behavior of compounds 1-3. All compounds were employed as building blocks to fabricate one-dimensional (1-D) organic luminescent nano- or microwires based on reprecipitation or slow evaporation approaches. Morphological transition from zero-dimensional (0-D) hollow nanospheres to 1-D nanotubes has been observed by recording SEM and TEM images of aggregated sates of compound 2 in THF/H(2)O mixtures at different aging time. It was demonstrated that the synthesized compounds with different lengths of alkyl chains displayed different wire formation properties. The single-crystal X-ray analysis of compound 2 provided reasonable explanation for the formation of 1-D nano- or microstructures.  相似文献   

16.
Herein, the trackable supramolecular transformation of a two-component molecular cage to a three-component cage through supramolecular fusion with another two-component molecular square is described. The use of tetraphenylethene (TPE), a chromophore with aggregation-induced emission (AIE) character, as a component for the molecular cages enables facile fluorescence monitoring of the transformation process: while both cages exhibit fluorescence emission via the restriction of intramolecular motion of the TPE motif, the interactions between TPE and 4,4′-bipyridine introduced in the supramolecular fusion process result in partial fluorescence quenching and shifts in the emission maximum. This study provides a simple and efficient approach towards complex supramolecular cages with emergent functions and demonstrates that AIE features could provide unique opportunities for the characterization of complex, dynamic supramolecular transformation processes.  相似文献   

17.
Since the concept of aggregation-induced emission (AIE) was proposed by Benzhong Tang's research group in 2001, the exploration of the mechanism of AIE and the development of new high-performance AIE materials have been the focus and goal of this field. On the basis of a large number of experiment results, AIE mechanism has been well explained by lots of works, such as restricted intramolecular motion (RIM), J-aggregate et al. As tetraphenylethlene (TPE) molecules are stacked, the rotation of the benzene ring rotor is blocked, and the energy attenuation is released in the form of radiation, showing the AIE effect. In order to further explore the AIE effect of TPE, we performed electronic structure, spectrum simulation, and AIE mechanism calculations of the anthryl-tetraphenylethene (TPE-an) monomer and dimer in the gas phase, tetrahydrofuran (THF), and aqueous solutions at the B3LYP/6-31G** level. The calculation results show that TPE-an molecule is in a propeller-like configuration, and its fluorescence intensity is weak; compared with the monomer, the fluorescence intensity of the dimer increases by 87% in aqueous solution; the fluorescence intensity in the gas phase, THF solution, and aqueous solution gradually enhances with the increase of the degree of aggregation, which are consistent with the experimental results. The enhancement of fluorescence intensity is caused by the change of molecular structure caused by aggregation. This detailed AIE luminescence mechanism will provide theoretical guidance for AIE material design.  相似文献   

18.
Mechanistic studies promote scientific development from phenomena to theories.Aggregation-induced emission(AIE),as an unusual photophysical phenomenon,builds the bridge between molecular science and aggregate mesoscience.With the twenty-year development of AIE,restriction of intramolecular motion(RIM)has been verified as the working mechanism of AIE effect.In this review,these mechanistic works about RIM are summarized from experimental and theoretical perspectives.Thereinto,the experimental studies are introduced from three parts:external rigidification,structural modification and structural characterization.In the theoretical part,calculations on the low-frequency motion of AIEgens have been performed to prove the RIM mechanism.By virtue of the theoretical calculations,some new mechanisms are proposed to supplement the RIM,such as restriction of access to conical intersection,suppression of Kasha transition,restriction of access to dark state,etc.It is foreseeable that the RIM mechanism will unify the photophysical theories for both molecules and aggregates,and inspire more progress in aggregate science.  相似文献   

19.
《中国化学快报》2023,34(5):107792
In recent twenty years, aggregation-induced emission (AIE), due to its excellent application prospect, has aroused widespread interests. The development of novel and easy to make AIE luminogens (AIEgens) is an attractive subject. For this purpose, it's very important to study the structure-property relationship of AIEgens. Because azine derivatives are easy to synthesis and some of them have nice AIE properties, herein, a series of azine derivatives (ADs) were employed as models to study the influence of different functional groups, electronic effects and structures on the AIE properties of azine derivatives. The AIE mechanism were studied by single crystal analysis, density functional theory (DFT) calculations and so on. The results indicated that the o-hydroxyl aryl substituted azine compounds could show good AIE properties. Meanwhile, the AIE properties of o-hydroxyl aryl substituted azine compounds were also influenced by the electronic effects of the aryl groups in the azine compounds. The o-hydroxyl groups could form intramolecular hydrogen bond with imine group, which play key role to restrict the intramolecular rotation of the aryl groups and act as base stone for the AIE process of this kind compounds. The HOMO-LUMO energy gaps of o-hydroxyl substituted azine are smaller than other homologous compounds, which is agree with the proposed AIE mechanism. Finally, thanks to the AIE properties, the o-hydroxy-substituted azines could be used as efficient Al3+ and Cu2+ fluorescent chemosensors in different conditions. In addition, test strips based on AD10 has been prepared, which can conveniently detect Cu2+ in industrial wastewater. This research supplied a way for the design of novel easy to make AIEgens through simple azine derivatives.  相似文献   

20.
It is attractive but highly challenging to achieve controllable regulation of photophysical properties of pure organic luminogens, due to distinct work mechanisms and molecular structures. Here, a strategy to regulate in a controllable way the emission behavior of luminogens is reported, according to which long-lived aggregation-induced emission (AIE) can be switched to short-lived dual-state emission (DSE) by an isomer-based substitution reaction. Three luminogens with sharply different photophysical behaviors, including aggregation-induced phosphorescence and dual-state fluorescence emission, were obtained through a substitution reaction with three isomers. Freely rotating structures are attributed to aggregation-induced phosphorescence behavior, whereas twisted rigidification of the molecule greatly contributes to its dual-state emission phenomenon. This work contributes to the controlled regulation of photophysical behaviors through simple reactions and provides a solid evidence to support the key role of the prohibition of intramolecular rotation in aggregation-induced emission process and molecular design of dual-state emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号