首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A sensitive and high‐throughput LC‐MS/MS method has been developed and validated for the combined determination of esomeprazole and naproxen in human plasma with ibuprofen as internal standard. Solid‐phase extraction was used to extract both analytes and internal standard from human plasma. Chromatographic separation was achieved in 4.0 min on XBridge C18 column using acetonitrile–25 mM ammonium formate (70:30, v/v) as mobile phase. Mass detection was achieved by ESI/MS/MS in negative ion mode, monitoring at m/z 344.19 → 194.12, 229.12 → 169.05 and 205.13 → 161.07 for esomeprazole, naproxen and IS, respectively. The calibration curves were linear from 3.00 to 700.02 ng/mL for esomeprazole and 0.50 to 150.08 ng/mL for naproxen. The intra‐ and inter‐batch precision and accuracy across four quality control levels met established criteria of US Food and Drug Administration guidelines. The assay is suitable for measuring accurate esomeprazole and naproxen plasma concentrations in human bioequivalence study following combined administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid and highly sensitive assay method has been developed and validated for the estimation of bicalutamide (BCL) on mouse dried blood spots (DBS) using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves a simple liquid extraction of BCL and tolbutamide (internal standard, IS) from mouse blood DBS cards using tert‐butyl methyl ether. Chromatographic separation was achieved with 5 mm ammonium acetate (pH 6.5)–acetonitrile (35:65, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 3.0 min. The MS/MS ion transitions monitored were 428.80 → 254.70 for BCL and 269.00 → 169.60 for IS. Method validation was performed as per regulatory guidelines. A linear response function was observed from 0.92 to 1911 ng/mL for BCL in mouse blood. The intra‐ and inter‐day precisions were in the ranges of 1.86–12.5 and 3.19–10.8%, respectively. This novel DBS method has been applied to a pharmacokinetic study in mice. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive, selective and rapid LC–ESI–MS/MS method has been developed and validated for the quantification of copanlisib in mouse plasma using enasidenib as an internal standard (IS) as per regulatory guideline. Copanlisib and the IS were extracted from mouse plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid–acetonitrile; 25:75, v/v) on a HyPURITY C18 column. Copanlisib and the IS eluted at ~0.95 and 2.00 min, respectively. The MS/MS ion transitions monitored were m/z 481.1 → 360.1 and m/z 474.0 → 456.0 for copanlisib and the IS, respectively. The calibration range was 3.59–3588 ng/mL. The intra‐ and inter‐batch accuracy and precision (RE and RSD) across quality controls met the acceptance criteria. Stability studies showed that copanlisib was stable in mouse plasma for one month. This novel method has been applied to a pharmacokinetic study in mice.  相似文献   

5.
In this study, a new LC‐ESI‐MS/MS‐based method was validated for the quantitation of hemslecin A in rhesus monkey plasma using otophylloside A as internal standard (IS). Hemslecin A and the IS were extracted from rhesus monkey plasma using liquid–liquid extraction as the sample clean‐up procedure, and were subjected to chromatography on a Phenomenex Luna CN column (150 × 2.0 mm, 3.0 µm) with the mobile phase consisting of methanol and 0.02 mol/mL ammonium acetate (55:45, v/v) at a flow rate of 0.2 mL/min. Detection was performed on an Agilent G6410B tandem mass spectrometer by positive ion electrospray ionization in multiple reaction monitoring mode, monitoring the transitions m/z 580.5 [M + NH4]+ → 503.4 and m/z 518.2 [M + NH4]+ → 345.0 for hemslecin A and IS, respectively. The assay was linear over the concentration range of 0.5–200 ng/mL and was successfully applied to a pharmacokinetic study in rhesus monkeys. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A highly sensitive, rapid assay method was developed and validated for the estimation of lorglumide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in positive‐ion mode. The assay procedure involves extraction of lorglumide and phenacetin (internal standard, IS) from mouse plasma with simple protein precipitation. Chromatographic separation was achieved using an isocratic mobile (0.2% formic acid solution–acetonitrile, 20:80, v/v) at a flow‐rate of 0.5 mL/min on an Atlantis dC18 column maintained at 40 °C with a total run time of 4.0 min. The MS/MS ion transitions monitored were 459.2 → 158.4 for lorglumide and 180.1 → 110.1 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.42 ng/mL and the linearity range extended from 0.42 to 500 ng/mL. The intra‐ and inter‐day precisions were in the ranges of 1.47–10.9 and 3.56–7.53, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A highly sensitive, rapid assay method has been developed and validated for the estimation of S‐citalopram (S‐CPM) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of S‐CPM and phenacetin (internal standard, IS) from rat plasma with t‐butyl methyl ether. Chromatographic separation was operated with 0.2% formic acid:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Symmetry Shield RP18 column with a total run time of 3.0 min. The MS/MS ion transitions monitored were 325.26 → 109.10 for S‐CPM and 180.10 → 110.10 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.5 ng/mL and the linearity was observed from 0.5 to 5000 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.14–5.56 and 0.25–12.3%, respectively. This novel method has been applied to a pharmacokinetic study and to estimate brain‐to‐plasma ratio of S‐CPM in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In the present study, the development and validation of an LC‐MS/MS method for quantifying mefenamic acid in human plasma is described. The method involves liquid–liquid extraction using diclofenac as an internal standard (IS). Chromatographic separation was achieved on a Thermo Hypurity C18, 50 × 4.6 mm, 5 µm column with a mobile phase consisting of 2 m m ammonium acetate buffer and methanol (pH 4.5 adjusted with glacial acetic acid; 15:85, v/v) at a flow‐rate of 0.75 mL/min and the total run time was 1.75 min. Analyte was introduced to the LC‐MS/MS using an atmospheric pressure ionization source. Both the drug and IS were detected in negative‐ion mode using multiple reaction monitoring m/z 240.0 → 196.3 and m/z 294.0 → 250.2, respectively, with a dwell time of 200 ms for each of the transitions. The standard curve was linear from 20 to 6000 ng/mL. This assay allows quantification of mefenamic acid at a concentration as low as 20 ng/mL in human plasma. The observed mean recovery was 73% for the drug. The applicability of this method for pharmacokinetic studies has been established after successful application during a 12‐subject bioavailibity study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A rapid, selective and sensitive liquid chromatography–tandem mass spectrometry assay method was developed for simultaneous determination of ambroxol and salbutamol in human plasma using citalopram hydrobromide as internal standard (IS). The sample was alkalinized with ammonia water (33:67, v/v) and extracted by single liquid–liquid extraction with ethyl acetate. Separation was achieved on Waters Acquity UPLC BEH C18 column using a gradient program at a flow rate of 0.2 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the ion transitions m/z 378.9 → 263.6 (ambroxol), m/z 240.2 → 147.7 (salbutamol) and m/z 325.0 → 261.7 (IS). The total analytical run time was relatively short (3 min). Calibration curves were linear in the concentration range of 0.5–100.0 ng/mL for ambroxol and 0.2–20.0 ng/mL for salbutamol, with intra‐ and inter‐run precision (relative standard deviation) <15% and accuracy (relative error) ranging from 97.7 to 112.1% for ambroxol and from 94.5 to 104.1% for salbutamol. The method was successfully applied in a clinical pharmacokinetic study of the compound ambroxol and salbutamol tablets.  相似文献   

10.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method has been developed and validated for the determination of asperosaponin VI in beagle dog plasma using glycyrrhizic acid as the internal standard (IS). Plasma samples were simply pretreated with methanol for deproteinization. Chromatographic separation was performed on a Hedera ODS‐2 column using mobile phase of methanol–10 mm ammonium acetate buffer solution containing 0.05% acetic acid (71:29, v/v) at a flow rate of 0.38 mL/min. Asperosaponin VI and the IS were eluted at 2.8 and 1.9 min, respectively, ionized in negative ion mode, and then detected by multiple reaction monitoring. The detection used the transitions of the deprotonated molecules at m/z 927.5 → 603.4 for asperosaponin VI and m/z 821.4 → 645.4 for glycyrrhizic acid (IS). The assay was linear over the concentration range of 0.15–700 ng/mL and was successfully applied to a pilot pharmacokinetic study in beagle dogs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A highly sensitive, specific and enantioselective assay has been developed and validated for the estimation of TAK‐700 enantiomers [(+)‐TAK‐700 and (?)‐TAK‐700] in rat plasma on LC‐MS/MS‐ESI in the positive‐ion mode. Liquid–liquid extraction was used to extract (±)‐TAK‐700 enantiomers and IS (phenacetin) from rat plasma. TAK‐700 enantiomers were separated using methanol and 5 mm ammonium acetate (80:20, v/v) at a flow rate of 0.7 mL/min on a Chiralcel OJ‐RH column. The total run time was 7.0 min and the elution of (+)‐TAK‐700, (?)‐TAK‐700 and IS occurred at 3.71, 4.45 and 4.33 min, respectively. The MS/MS ion transitions monitored were m/z 308.2 → 95.0 for TAK‐700 and m/z 180.2 → 110.1 for IS. The standard curves for TAK‐700 enantiomers were linear (r2 > 0.998) in the concentration range 2.01–2015 ng/mL for each enantiomer. The inter‐ and intra‐day precisions were in the ranges 3.74–7.61 and 2.06–8.71% and 3.59–9.00 and 2.32–11.0% for (+)‐TAK‐700 and (?)‐TAK‐700, respectively. Both the enantiomers were found to be stable in a battery of stability studies. This novel method was applied to the study of stereoselective oral pharmacokinetics of (+)‐TAK‐700 and it was unequivocally demonstrated that (+)‐TAK‐700 does not undergo chiral inversion to its antipode in vivo. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
An improved, simple and highly sensitive LC‐MS/MS method has been developed and validated for quantification of febuxostat with 100 μL human plasma using febuxostat‐d7 as an internal standard (IS) according to regulatory guidelines. The analyte and IS were extracted from human plasma via liquid–liquid extraction using diethyl ether. The chromatographic separation was achieved on a Zorbax C18 column using a mixture of acetonitrile and 5 mm ammonium formate (60:40, v/v) as the mobile phase at a flow rate of 0.5 mL/min. The total run time was 5.0 min and the elution of febuxostat and IS occurred at 1.0 and 1.5 min, respectively. A linear response function was established for the range of concentrations 1–6000 ng/mL (r > 0.99). The precursor to product ion transitions monitored for febuxostat and IS were m/z 317.1 → 261.1 and 324.2 → 262.1, respectively. The intra‐ and inter‐day precisions (%RSD) were within 1.29–9.19 and 2.85–7.69%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A highly sensitive, accurate and robust LC‐MS/MS method was developed and validated for determination of nimorazole (NMZ) in rat plasma using metronidazole (MNZ) as internal standard (IS). The analyte and IS were extracted from plasma by precipitating protein with acetonitrile and were chromatographed using an Agilent Poroshell 120, EC‐C18 column. The mobile phase was composed of a mixture of acetonitrile and 0.1 % formic acid (85:15 v/v). The total run time was 1.5 min and injection volume was 5 μL. Multiple reaction monitoring mode using the transitions of m/z 227.1 → m/z 114.0 for MNZ and m/z 172.10 → m/z 128.1 for IS were monitored on a triple quadrupole mass spectrometer, operating in positive ion mode. The calibration curve was linear in the range of 0.25–200 ng/mL (r2 > 0.9996) and the lower limit of quantification was 0.25 ng/mL in the rat plasma samples. Recoveries of NMZ ranged between 88.05 and 95.25%. The precision (intra‐day and inter‐day) and accuracy of the quality control samples were 1.25–8.20% and ?2.50–3.10, respectively. The analyte and IS were found to be stable during all sample storage and analysis procedures. The LC‐MS/MS method described here was validated and successfully applied to pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, rapid and sensitive liquid chromatography/positive ion electro‐spray tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the quantification of fexofenadine with 100 μL human plasma employing glipizide as internal standard (IS). Protein precipitation was used in the sample preparation procedure. Chromatographic separation was achieved on a reversed‐phase C18 column (5 μm, 100 × 2.1 mm) with methanol : buffer (containing 10 mmol/L ammonium acetate and 0.1% formic acid; 70 : 30, v/v) as mobile phase. The total chromatographic runtime was approximately 3.0 min with retention time for fexofenadine and IS at approximately 1.9 and 2.1 min, respectively. Detection of fexofenadine and IS was achieved by LC‐MS/MS in positive ion mode using 502.1 → 466.2 and 446.0 → 321.1 transitions, respectively. The method was proved to be accurate and precise at linearity range of 1–600 ng/mL with a correlation coefficient (r) of ≥0.9976. The validated method was applied to a pharmacokinetic study in human volunteers following oral administration of 60 or 120 mg fexofenadine formulations, successfully. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A sensitive and rapid LC‐MS/MS method was developed and validated for the determination of kadsurenone in rat plasma using lysionotin as the internal standard (IS). The analytes were extracted from rat plasma with acetonitrile and separated on a SB‐C18 column (50 × 2.1 mm, i.d.; 1.8 µm) at 30 °C. Elution was achieved with a mobile phase consisting of methanol–water–formic acid (65:35:0.1, v/v/v) at a flow rate of 0.30 mL/min. Detection and quantification for analytes were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 357.1 → 178.1 for kadsurenone, and m/z 345.1 → 315.1 for IS. Calibration curves were linear over a concentration range of 4.88–1464 ng/mL with a lower limit of quantification of 4.88 ng/mL. The intra‐ and inter‐day accuracies and precisions were <8.9%. The LC‐MS/MS assay was successfully applied for oral pharmacokinetic evaluation of kadsurenone using the rat as an animal model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A simple, selective and reliable LC‐MS/MS method was validated for simultaneous quantitation of darolutamide diastereomers in 50 μL mouse plasma using warfarin as an internal standard (IS) as per regulatory guidelines. Plasma samples were extracted by liquid–liquid extraction and the chromatographic separation was achieved on a Chiralpak IA column with an isocratic mobile phase 5 mm ammonium acetate–absolute alcohol (20:80, v/v) at a flow rate of 1.0 mL/min. Detection and quantitation was done in multiple reaction monitoring mode following the transitions m/z 397 → 202 and 307 → 250 for darolutamide diastereomers and the IS, respectively, in the negative ionization mode. The linearity range was 100–2400 ng/mL for each diastereomer. The intra‐ and inter‐day precisions were in the ranges of 1.78–4.20 and 4.34–14.6, and 3.63–4.74 and 4.78–5.15 for diastereomer‐1 and diastereomer‐2, respectively. Both diastereomers were found to be stable under different stability conditions. The validated method was applied to a pharmacokinetic study in mice. Following oral administration of darolutamide at 10 mg/kg, maximum concentration in plasma was 4189 and 726 ng/mL for diastereomer‐1 and diastereomer‐2, respectively. The terminal half‐life was found to be ~0.50 h for both the diastereomers. The AUC(0–t) was found to be 18,961 ng*h/mL for diastereomer‐1 and 1340 ng*h/mL diastereomer‐2.  相似文献   

18.
A rapid, simple and fully validated LC‐MS/MS method was developed and validated for the determination of megestrol acetate in human plasma using tolbutamide as an internal standard (IS) after one‐step liquid–liquid extraction with methyl‐tert‐butyl‐ether. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the transitions m/z 385.5 → 267.1 for megestrol acetate and m/z 271.4 → 155.1 for IS. Chromatographic separation was performed on a YMC Hydrosphere C18 column with an isocratic mobile phase, which consisted of 10 mm ammonium formate buffer (adjusted to pH 5.0 with formic acid)–methanol (60:40, v/v) at a flow rate of 0.4 mL/min. The achieved lower limit of quantitation (LLOQ) was 1 ng/mL (signal‐to‐noise ratio > 10) and the standard calibration curve for megestrol acetate was linear (r > 0.99) over the studied concentration range (1–2000 ng/mL). The proposed method was fully validated by determining its specificity, linearity, LLOQ, intra‐ and inter‐day precision and accuracy, recovery, matrix effect and stability. The validated LC‐MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of megestrol acetate after oral administration of a single dose 800 mg of megestrol acetate (Megace?) to five healthy Korean male volunteers under fed conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A highly sensitive, specific and rapid LC‐ESI‐MS/MS method has been developed and validated for simultaneous quantification of methotrexate (MTX) and tofacitinib (TFB) in rat plasma (50 μL) using phenacetin as an internal standard (IS), as per the US Food and Drug Administration guidelines. After a solid‐phase extraction procedure, the separation of the analytes and IS was performed on a Chromolith RP18e column using an isocratic mobile phase of 5 m m ammonium acetate (pH 5.0) and acetonitrile at a ratio of 25:75 (v/v) using flow‐gradient with a total run time of 3.5 min. The detection was performed in multiple reaction monitoring mode, using the transitions of m/z 455.2 → 308.3, m/z 313.2 → 149.2 and m/z 180.3 → 110.2 for MTX, TFB and IS, respectively. The calibration curves were linear over the range of 0.49–91.0 and 0.40–74.4 ng/mL for MTX and TFB, respectively. The intra‐ and interday accuracy and precision values for MTX and TFB were <15% at low quality control (QC), medium QC and high QC and <20% at lower limit of quantification. The validated assay was applied to derive the pharmacokinetic parameters for MTX and TFB post‐dosing of MTX and TFB orally and intravenously to rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号