首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对现有动态面板数据分析中存在偶发参数和没有考虑模型参数的不确定性风险问题,提出了基于Gibbs抽样算法的贝叶斯随机系数动态面板数据模型.假设初始值服从平稳分布,自回归系数服从Logit正态分布的条件下,设计了Markov链Monte Carlo数值计算程序,得到了模型参数的贝叶斯估计值.实证研究结果表明:基于Gibb...  相似文献   

2.
Bayesian spatial modeling of genetic population structure   总被引:2,自引:0,他引:2  
Natural populations of living organisms often have complex histories consisting of phases of expansion and decline, and the migratory patterns within them may fluctuate over space and time. When parts of a population become relatively isolated, e.g., due to geographical barriers, stochastic forces reshape certain DNA characteristics of the individuals over generations such that they reflect the restricted migration and mating/reproduction patterns. Such populations are typically termed as genetically structured and they may be statistically represented in terms of several clusters between which DNA variations differ clearly from each other. When detailed knowledge of the ancestry of a natural population is lacking, the DNA characteristics of a sample of current generation individuals often provide a wealth of information in this respect. Several statistical approaches to model-based clustering of such data have been introduced, and in particular, the Bayesian approach to modeling the genetic structure of a population has attained a vivid interest among biologists. However, the possibility of utilizing spatial information from sampled individuals in the inference about genetic clusters has been incorporated into such analyses only very recently. While the standard Bayesian hierarchical modeling techniques through Markov chain Monte Carlo simulation provide flexible means for describing even subtle patterns in data, they may also result in computationally challenging procedures in practical data analysis. Here we develop a method for modeling the spatial genetic structure using a combination of analytical and stochastic methods. We achieve this by extending a novel theory of Bayesian predictive classification with the spatial information available, described here in terms of a colored Voronoi tessellation over the sample domain. Our results for real and simulated data sets illustrate well the benefits of incorporating spatial information to such an analysis.  相似文献   

3.
This article proposes a four-pronged approach to efficient Bayesian estimation and prediction for complex Bayesian hierarchical Gaussian models for spatial and spatiotemporal data. The method involves reparameterizing the covariance structure of the model, reformulating the means structure, marginalizing the joint posterior distribution, and applying a simplex-based slice sampling algorithm. The approach permits fusion of point-source data and areal data measured at different resolutions and accommodates nonspatial correlation and variance heterogeneity as well as spatial and/or temporal correlation. The method produces Markov chain Monte Carlo samplers with low autocorrelation in the output, so that fewer iterations are needed for Bayesian inference than would be the case with other sampling algorithms. Supplemental materials are available online.  相似文献   

4.
Recently there has been a lot of effort to model extremes of spatially dependent data. These efforts seem to be divided into two distinct groups: the study of max-stable processes, together with the development of statistical models within this framework; the use of more pragmatic, flexible models using Bayesian hierarchical models (BHM) and simulation based inference techniques. Each modeling strategy has its strong and weak points. While max-stable models capture the local behavior of spatial extremes correctly, hierarchical models based on the conditional independence assumption, lack the asymptotic arguments the max-stable models enjoy. On the other hand, they are very flexible in allowing the introduction of physical plausibility into the model. When the objective of the data analysis is to estimate return levels or kriging of extreme values in space, capturing the correct dependence structure between the extremes is crucial and max-stable processes are better suited for these purposes. However when the primary interest is to explain the sources of variation in extreme events Bayesian hierarchical modeling is a very flexible tool due to the ease with which random effects are incorporated in the model. In this paper we model a data set on Portuguese wildfires to show the flexibility of BHM in incorporating spatial dependencies acting at different resolutions.  相似文献   

5.
Gaussian process models have been widely used in spatial statistics but face tremendous modeling and computational challenges for very large nonstationary spatial datasets. To address these challenges, we develop a Bayesian modeling approach using a nonstationary covariance function constructed based on adaptively selected partitions. The partitioned nonstationary class allows one to knit together local covariance parameters into a valid global nonstationary covariance for prediction, where the local covariance parameters are allowed to be estimated within each partition to reduce computational cost. To further facilitate the computations in local covariance estimation and global prediction, we use the full-scale covariance approximation (FSA) approach for the Bayesian inference of our model. One of our contributions is to model the partitions stochastically by embedding a modified treed partitioning process into the hierarchical models that leads to automated partitioning and substantial computational benefits. We illustrate the utility of our method with simulation studies and the global Total Ozone Matrix Spectrometer (TOMS) data. Supplementary materials for this article are available online.  相似文献   

6.
We consider a network of sensors that measure the intensities of a complex plume composed of multiple absorption–diffusion source components. We address the problem of estimating the plume parameters, including the spatial and temporal source origins and the parameters of the diffusion model for each source, based on a sequence of sensor measurements. The approach not only leads to multiple‐source detection, but also the characterization and prediction of the combined plume in space and time. The parameter estimation is formulated as a Bayesian inference problem, and the solution is obtained using a Markov chain Monte Carlo algorithm. The approach is applied to a simulation study, which shows that an accurate parameter estimation is achievable. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Spatial autoregressive and moving average Hilbertian processes   总被引:1,自引:0,他引:1  
This paper addresses the introduction and study of structural properties of Hilbert-valued spatial autoregressive processes (SARH(1) processes), and Hilbert-valued spatial moving average processes (SMAH(1) processes), with innovations given by two-parameter (spatial) matingale differences. For inference purposes, the conditions under which the tensorial product of standard autoregressive Hilbertian (ARH(1)) processes (respectively, of standard moving average Hilbertian (MAH(1)) processes) is a standard SARH(1) process (respectively, it is a standard SMAH(1) process) are studied. Examples related to the spatial functional observation of two-parameter Markov and diffusion processes are provided. Some open research lines are described in relation to the formulation of SARMAH processes, as well as General Spatial Linear Processes in Functional Spaces.  相似文献   

8.
We discuss a new class of spatially varying, simultaneous autoregressive (SVSAR) models motivated by interests in flexible, non-stationary spatial modelling scalable to higher dimensions. SVSAR models are hierarchical Markov random fields extending traditional SAR models. We develop Bayesian analysis using Markov chain Monte Carlo methods of SVSAR models, with extensions to spatio-temporal contexts to address problems of data assimilation in computer models. A motivating application in atmospheric science concerns global CO emissions where prediction from computer models is assessed and refined based on high-resolution global satellite imagery data. Application to synthetic and real CO data sets demonstrates the potential of SVSAR models in flexibly representing inhomogeneous spatial processes on lattices, and their ability to improve estimation and prediction of spatial fields. The SVSAR approach is computationally attractive in even very large problems; computational efficiencies are enabled by exploiting sparsity of high-dimensional precision matrices.  相似文献   

9.
A flexible Bayesian periodic autoregressive model is used for the prediction of quarterly and monthly time series data. As the unknown autoregressive lag order, the occurrence of structural breaks and their respective break dates are common sources of uncertainty these are treated as random quantities within the Bayesian framework. Since no analytical expressions for the corresponding marginal posterior predictive distributions exist a Markov Chain Monte Carlo approach based on data augmentation is proposed. Its performance is demonstrated in Monte Carlo experiments. Instead of resorting to a model selection approach by choosing a particular candidate model for prediction, a forecasting approach based on Bayesian model averaging is used in order to account for model uncertainty and to improve forecasting accuracy. For model diagnosis a Bayesian sign test is introduced to compare the predictive accuracy of different forecasting models in terms of statistical significance. In an empirical application, using monthly unemployment rates of Germany, the performance of the model averaging prediction approach is compared to those of model selected Bayesian and classical (non)periodic time series models.  相似文献   

10.
This paper addresses the solution of parabolic evolution equations simultaneously in space and time as may be of interest in, for example, optimal control problems constrained by such equations. As a model problem, we consider the heat equation posed on the unit cube in Euclidean space of moderately high dimension. An a priori stable minimal residual Petrov–Galerkin variational formulation of the heat equation in space–time results in a generalized least squares problem. This formulation admits a unique, quasi‐optimal solution in the natural space–time Hilbert space and serves as a basis for the development of space–time compressive solution algorithms. The solution of the heat equation is obtained by applying the conjugate gradient method to the normal equations of the generalized least squares problem. Starting from stable subspace splittings in space and in time, multilevel space–time preconditioners for the normal equations are derived. In order to reduce the complexity of the full space–time problem, all computations are performed in a compressed or sparse format called the hierarchical Tucker format, supposing that the input data are available in this format. In order to maintain sparsity, compression of the iterates within the hierarchical Tucker format is performed in each conjugate gradient iteration. Its application to vectors in the hierarchical Tucker format is detailed. Finally, numerical results in up to five spatial dimensions based on the recently developed htucker toolbox for MATLAB are presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Recently, a Bayesian network model for inferring non-stationary regulatory processes from gene expression time series has been proposed. The Bayesian Gaussian Mixture (BGM) Bayesian network model divides the data into disjunct compartments (data subsets) by a free allocation model, and infers network structures, which are kept fixed for all compartments. Fixing the network structure allows for some information sharing among compartments, and each compartment is modelled separately and independently with the Gaussian BGe scoring metric for Bayesian networks. The BGM model can equally be applied to both static (steady-state) and dynamic (time series) gene expression data. However, it is this flexibility that renders its application to time series data suboptimal. To improve the performance of the BGM model on time series data we propose a revised approach in which the free allocation of data points is replaced by a changepoint process so as to take the temporal structure into account. The practical inference follows the Bayesian paradigm and approximately samples the network, the number of compartments and the changepoint locations from the posterior distribution with Markov chain Monte Carlo (MCMC). Our empirical results show that the proposed modification leads to a more efficient inference tool for analysing gene expression time series.  相似文献   

12.
Summary A Bayesian approach to nonstationary process analysis is proposed. Given a set of data, it is divided into several blocks with the same length, and in each block an autoregressive model is fitted to the data. A constraint on the autoregressive coefficients of the successive blocks is considered. This constraint controls the smoothness of the temporal change of spectrum as shown in Section 2. A smoothness parameter, which is called a hyper parameter in this article, is determined with the aid of the minimum ABIC (Akaike Bayesian Information Criterion) procedure. Numerical examples of our procedure are also given. The Institute of Statistical Mathematics  相似文献   

13.
We develop NHPP models to characterize categorized event data, with application to modelling the discovery process for categorized software defects. Conditioning on the total number of defects, multivariate models are proposed for modelling the defects by type. A latent vector autoregressive structure is used to characterize dependencies among the different types. We show how Bayesian inference can be achieved via MCMC procedures, with a posterior prediction‐based L‐measure used for model selection. The results are illustrated for defects of different types found during the System Test phase of a large operating system software development project. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
We investigate the class of σ-stable Poisson–Kingman random probability measures (RPMs) in the context of Bayesian nonparametric mixture modeling. This is a large class of discrete RPMs, which encompasses most of the popular discrete RPMs used in Bayesian nonparametrics, such as the Dirichlet process, Pitman–Yor process, the normalized inverse Gaussian process, and the normalized generalized Gamma process. We show how certain sampling properties and marginal characterizations of σ-stable Poisson–Kingman RPMs can be usefully exploited for devising a Markov chain Monte Carlo (MCMC) algorithm for performing posterior inference with a Bayesian nonparametric mixture model. Specifically, we introduce a novel and efficient MCMC sampling scheme in an augmented space that has a small number of auxiliary variables per iteration. We apply our sampling scheme to a density estimation and clustering tasks with unidimensional and multidimensional datasets, and compare it against competing MCMC sampling schemes. Supplementary materials for this article are available online.  相似文献   

15.
Our article considers the class of recently developed stochastic models that combine claims payments and incurred losses information into a coherent reserving methodology. In particular, we develop a family of hierarchical Bayesian paid–incurred claims models, combining the claims reserving models of Hertig (1985) and Gogol (1993). In the process we extend the independent log-normal model of Merz and Wüthrich (2010) by incorporating different dependence structures using a Data-Augmented mixture Copula paid–incurred claims model.In this way the paper makes two main contributions: firstly we develop an extended class of model structures for the paid–incurred chain ladder models where we develop precisely the Bayesian formulation of such models; secondly we explain how to develop advanced Markov chain Monte Carlo sampling algorithms to make inference under these copula dependence PIC models accurately and efficiently, making such models accessible to practitioners to explore their suitability in practice. In this regard the focus of the paper should be considered in two parts, firstly development of Bayesian PIC models for general dependence structures with specialised properties relating to conjugacy and consistency of tail dependence across the development years and accident years and between Payment and incurred loss data are developed. The second main contribution is the development of techniques that allow general audiences to efficiently work with such Bayesian models to make inference. The focus of the paper is not so much to illustrate that the PIC paper is a good class of models for a particular data set, the suitability of such PIC type models is discussed in Merz and Wüthrich (2010) and Happ and Wüthrich (2013). Instead we develop generalised model classes for the PIC family of Bayesian models and in addition provide advanced Monte Carlo methods for inference that practitioners may utilise with confidence in their efficiency and validity.  相似文献   

16.
The threshold autoregressive model with generalized autoregressive conditionally heteroskedastic (GARCH) specification is a popular nonlinear model that captures the well‐known asymmetric phenomena in financial market data. The switching mechanisms of hysteretic autoregressive GARCH models are different from threshold autoregressive model with GARCH as regime switching may be delayed when the hysteresis variable lies in a hysteresis zone. This paper conducts a Bayesian model comparison among competing models by designing an adaptive Markov chain Monte Carlo sampling scheme. We illustrate the performance of three kinds of criteria by comparing models with fat‐tailed and/or skewed errors: deviance information criteria, Bayesian predictive information, and an asymptotic version of Bayesian predictive information. A simulation study highlights the properties of the three Bayesian criteria and the accuracy as well as their favorable performance as model selection tools. We demonstrate the proposed method in an empirical study of 12 international stock markets, providing evidence to strongly support for both models with skew fat‐tailed innovations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates a nonlinear inverse problem associated with the heat conduction problem of identifying a Robin coefficient from boundary temperature measurement. A Bayesian inference approach is presented for the solution of this problem. The prior modeling is achieved via the Markov random field (MRF). The use of a hierarchical Bayesian method for automatic selection of the regularization parameter in the function estimation inverse problem is discussed. The Markov chain Monte Carlo (MCMC) algorithm is used to explore the posterior state space. Numerical results indicate that MRF provides an effective prior regularization, and the Bayesian inference approach can provide accurate estimates as well as uncertainty quantification to the solution of the inverse problem.  相似文献   

18.
This work develops a Bayesian approach to perform inference and prediction in Gaussian random fields based on spatial censored data. These type of data occur often in the earth sciences due either to limitations of the measuring device or particular features of the sampling process used to collect the data. Inference and prediction on the underlying Gaussian random field is performed, through data augmentation, by using Markov chain Monte Carlo methods. Previous approaches to deal with spatial censored data are reviewed, and their limitations pointed out. The proposed Bayesian approach is applied to a spatial dataset of depths of a geologic horizon that contains both left- and right-censored data, and comparisons are made between inferences based on the censored data and inferences based on “complete data” obtained by two imputation methods. It is seen that the differences in inference between the two approaches can be substantial.  相似文献   

19.
Maximum likelihood (ML) estimation of spatial autoregressive models for large spatial data sets is well established by making use of the commonly sparse nature of the contiguity matrix on which spatial dependence is built. Adding a measurement error that naturally separates the spatial process from the measurement error process are not well established in the literature, however, and ML estimation of such models to large data sets is challenging. Recently a reduced rank approach was suggested which re-expresses and approximates such a model as a spatial random effects model (SRE) in order to achieve fast fitting of large data sets by fitting the corresponding SRE. In this paper we propose a fast and exact method to accomplish ML estimation and restricted ML estimation of complexity of \(O(n^{3/2})\) operations when the contiguity matrix is based on a local neighbourhood. The methods are illustrated using the well known data set on house prices in Lucas County in Ohio.  相似文献   

20.
Starting from a purely spatial variogram, this paper derives a class of semiparametric spatio-temporal covariance models that are stationary in time but not necessarily stationary in space. In particular, we obtain spatio-temporal covariance models with the continuous-time autoregressive and moving average (ARMA) temporal margin and long-range dependent spatial margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号