首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The selectivity of the determination of traces of cadmium, lead, thallium and indium is improved by direct coupling of liquid/liquid extraction and anodic stripping voltammetry. Metals are extracted from aqueous solution to benzene or chloroform after the addition of sodium or zinc diethyldithiocarbamate. Stripping voltammetry of Cd, Tl and Pb at a hanging mercury drop electrode or mercury film electrode is done in benzene/methanol medium (1:1) with 0.1 M NaClO4 as supporting electrolyte. For indium, the medium is chloroform/ethanol/water (1:4:1) with 0.005 M sodium acetate/0.06 M KBr/0.06 M HCl as supporting electrolyte. The complexes in acidic solution can be decomposed by mercury (II) ions, which provides useful shifts of deposition potentials. Calibration graphs are linear at concentrations of about 10?7 M with a detection limit of 1×10?8 M. The method is applied to determine a single metal in the presence of a large amount (1000-fold) of interfering metal.  相似文献   

2.
The interaction of the sage, mint, apple, and ginseng pectins, isolated from tissue culture wastes and purified with copper, mercury, zinc, and cadmium salts, has been studied by the amperometric method with two metal indicator electrodes. The optimum conditions of titration have been determined: pH 3.5–5.0; concentration of pectin substances 5·10–5-1·10–3 g/ml of solution. It has been established by graphical and mathematical methods that the interaction is accompanied by the formation of compounds with a ratio of the carboxy groups of pectins to the metal cation of two. The IR spectra of sage pectin and of copper and mercury pectinates are given.M. V. Frunze, Simferopol' State University. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 171–175, March–April, 1988.  相似文献   

3.
Chemical and electrochemical syntheses of zinc(II) and cadmium(II) complexes based on tetradentate Schiff bases (H2L1 and H2L2) resulting from condensation of 2-tosylaminobenzaldehyde with 3,6-dioxa-1,8-octanediamine or 4,9-dioxa-1,12-dodecanediamine were performed. The structure, composition, and properties of the complexes were studied by elemental analysis, IR, 1H NMR, and UV spectroscopy, X-ray absorption spectroscopy, and X-ray diffraction. The zinc(II) and cadmium(II) complexes luminesce in a DMF solution in the blue spectral region (λPL = 425–433 nm), the photoluminescence quantum yield φ being 0.25–0.30. Multilayer zinc(II)- and cadmium(II)-based electroluminescent structures with green-blue emission of the exciplex nature were fabricated.  相似文献   

4.
The adsorption of mercury from a single/multi-solute aqueous solution by activated carbon (AC) prepared from cherry stones (CS) by chemical activation with H3PO4, ZnCl2 or KOH is studied. Three series of AC (i.e., P, H3PO4; Z, ZnCl2; K, KOH) were prepared by controlling the impregnation ratio and carbonization temperature. The textural characterization of AC was carried out by gas adsorption, mercury porosimetry and density measurements. The surface chemistry was analyzed by the pH of the point of zero charge (pHzpc), FT-IR spectroscopy and Boehm’s method. Experiments of mercury adsorption were conducted by the batch method, using aqueous solutions of mercury and of mercury, cadmium and zinc without pH adjustment. The ACs possess a wide range of pore volumes and sizes. Their microporosity is usually well developed. The meso- and macropore volumes are higher for the P carbons and K carbons, respectively. BET surface areas as a rule range between 1000 and 2000 m2?g?1. The pHzpc is much lower for the P carbons. The content of acidic oxygen surface groups is lower for the K carbons, whereas the content of basic groups is higher for these carbons. The kinetics of the adsorption process of mercury is faster for ACs with high volumes of large size pores. However, the surface groups have a marked unfavorable influence on the kinetics. The pseudo-second order rate constant (k2×10?3, g/mol?h) is higher by the order Z-4-800 (67.69)>K-3-800 (43.45)>P-3.44-400 (36.98). The incorporation of zinc and cadmium to the mercury solution usually decelerates the adsorption process for the P carbons and Z carbons and accelerates it for the K carbons. The amount adsorbed of mercury is much larger for the K carbons than for the other ACs. For the Z carbons, competition effects of zinc and cadmium on the adsorption of mercury are negligible, which indicates that mercury adsorbs specifically on surface active sites of these adsorbents.  相似文献   

5.
We present a simplified approach for the trace screening of toxic heavy metals utilizing bismuth oxide screen printed electrodes. The use of bismuth oxide instead of toxic mercury films facilitates the reliable sensing of lead(II), cadmium(II) and zinc(II). A linear range over 5 to 150 μg L?1 with detection limits of 2.5 and 5 μg L?1 are readily observed for cadmium and lead in 0.1 M HCl, respectively. Conducting a simultaneous multi‐elemental voltammetric detection of zinc, cadmium and lead in a higher pH medium (0.1 M sodium acetate solution) exhibited a linear range between 10 and 150 μg L?1 with detection limits of 5, 10 and 30 μg L?1 for cadmium, lead and zinc respectively. The sensor is greatly simplified over those recently reported such as bismuth nanoparticle modified electrodes and bismuth film coated screen printed electrodes. The scope of applications of this sensor with the inherent advances in electroanalysis coupled with the negliable toxicity of bismuth is extensive allowing high throughput electroanalysis.  相似文献   

6.
《Analytical letters》2012,45(7):1181-1190
Abstract

The spectral characteristics and analytical properties of 4, 4′-Biazobenzenediazoaminobenzene as a new chromogenic reagent have been described and the optimum conditions for reaction with eight metal ions are presented. In the presence of Triton X-100 and sodium tetraborate solution, the reagent can be used for the determination of Hg, Ni, Cd. The molar absorptivities are 1.8×105 l.mol?1. cm?1 at 515 nm for mercury, 2.0×105 l.mol?1. cm?1 at 540 nm for nickel, and 1.8×105 l.mol?1.cm?1 at 526 nm for cadmium. The recommended procedure has been used for the spectrophotometric determination of cadmium in waste water.  相似文献   

7.
A radiochemical neutron activation method for the simultaneous determination of arsenic, cadmium, cobalt, mercury, molybdenum, and zinc in fresh water is described. The method is based on anion-exchange separation in hydrochloric acid media followed by simple precipitations. The determination limits, based on analysis of a 5-ml sample without preconcentration, and with a well-type NaI(Tl) detector, are as follows: As, 10-3 μg l-1 ; Cd, 6 × 10-2 μg l-1 ; Co, 4 × 10-3 μg l-1 ; Hg, 7 × 10-3 μg l-1 ; Mo, 10-1 μg l-1 ; Zn, 2 × 10-1 μg l-1. The method is adequate for the analysis of natural fresh waters.  相似文献   

8.
Jakmunee J  Junsomboon J 《Talanta》2008,77(1):172-175
An anodic stripping voltammetric method has been developed for determination of cadmium, lead, copper and zinc in acetic acid extract of glazed ceramic surfaces. An aliquot of 4% (v/v) acetic acid solution was kept in a ceramic ware for 24 h in the dark, then 10 mL of the extracted solution was placed in a voltammetric cell. The solution was purged with oxygen free nitrogen gas for 3 min before deposition of the metals was carried out by applying a constant potential of −1.20 V versus Ag/AgCl to the hanging mercury drop electrode (HMDE) for 45 s. A square wave waveform was scanned from −1.20 to 0.15 V and a voltammogram was recorded. A standard addition procedure was used for quantification. Detection limits of 0.25, 0.07, 2.7 and 0.5 μg L−1 for cadmium, lead copper and zinc, respectively, were obtained. Relative standard deviations for 11 replicate determinations of 100 μg L−1 each of all the metals were in the range of 2.8-3.6%. Percentage recoveries obtained by spiking 50 μg L−1 of each metal to the sample solution were in the range of 105-113%. The method was successfully applied to ceramic wares producing in Lampang province of Thailand. It was found that the contents of cadmium, lead, copper and zinc released from the samples were in the range of <0.01-0.16, 0.02-0.45, <0.14 and 0.28-10.36 μg dm−2, respectively, which are lower than the regulated values of the Thai industrial standard. The proposed method is simpler, more convenient and more sensitive than the standard method based on FAAS.  相似文献   

9.
Sakai Y  Kawano N  Nakamura H  Takagi M 《Talanta》1986,33(5):407-410
N,N'-Bis(2-hydroxy-5-nitrobenzyl)cryptand-22 (22-Koshland) forms yellow complexes with bivalent metal ions, and these are extractable into 1,2-dichloroethane. The overall extraction constants have been estimated for lead (10(-5.4)), copper (10(-5.6)), mercury (10(-5.8)) and cadmium (10(-8.4)). The result obtained has been applied to extraction and photometric determination of lead. The molar absorptivity at the absorption maximum (406 nm) is 4.47 x 10(4) l.mole(-1).cm(-1). The interferences from copper and mercury can be eliminated by the addition of sodium thiosulphate and the interference from cadmium can be eliminated by calculation from the absorbances at 406 and 391 nm (the cadmium complex with 22-Koshland has its absorption maximum at 391 nm). The method has been successfully applied to the determination of lead in zinc powder.  相似文献   

10.
Cadmium(II) reacts with 2-[2-(5-bromopyridyl)azo]-5-dimethyl-aminophenol (5-Br-DMPAP) in aqueous solution; the complex can be extracted with organic solvents such as chloroform, 3-methyl-l-butanol and methyl isobutyl ketone at pH 8–10.5 to give a red solution which absorbs at 525–555 nm. The absorbance in organic solvents is stable and the system conforms to Beer's law; the optimal range in 3-methyl-1-butanol for measurement in 1.00-cm cells is 0.01–l p.p.m. cadmium. Moderate amounts of many cations and anions do not interfere, and interfering cations such as zinc, copper, manganese and nickel can be separated by extraction with dithizone. The 5-Br-DMPAP method is one of the most sensitive procedures available for the determination of cadmium; the molar absorptivity in a 3-methyl-1-butanol extract is 1.41·105 1 mol?1 cm?1 at 555 nm.  相似文献   

11.
《Analytical letters》2012,45(10):921-927
Abstract

The extraction of zinc, cadmium and mercury(II) with a 0. 1 M solution of tribenzylamine in chloroform was studied at varying concentrations of hydrobromic and hydroiodic acid solutions. The extractions of halo complexes of these elements are in accordance with the stability of their tetrahalo complexes in aqueous solution. Using the data mutual binary separations of zinc, cadmium and mercury with high separation coefficients are proposed.  相似文献   

12.
《Analytical letters》2012,45(20):2521-2536
Abstract

A selective and sensitive spectrophotometric and atomic absorption spectrophotometric method is developed for the determination of traces of mercury with N-phenylcinnamohydroxamic acid (PCHA) in the environment. Mercury is extracted into a chloroform solution of PCHA at pH 8.5-10.0 and determined by AAS. The mercury hydroxamate binary complex is yellow in colour having a maximum absorbance at 390 nm and molar absorptivity 4.3 × 103 1 mol?1 cm?1, sandell sensitivity 0.0466 μg/cm2. The ternary system using 1-(2-pyridylazo)-2-naphthol has molar absorptivity 8.82 × 103 1 mol?1 cm?1 at 550nm, sandell sensitivity 0.0228 μ/cm2. Beer's law is obeyed in the concentration range of 2.37-38.0 ppm and 0.80-19.5 ppm of mercury for binary and ternary system, respectively. The extraction of Hg-PCHA binary system is studied with a liquid cation exchanger, bis-(2-ethyl hexyl) phosphoric acid (HDEHP) and found to have better selectivity than Hg-PCHA-PAN system. The molar absorptivity of the Hg-PCHA-HDEHP system is 8.82 × 103 1 mol?1 cm?1 at 390 nm and Beer's law is obeyed in the concentration range of 0.47-20 ppm of mercury.

The present method is applied to the determination of mercury in eye drops, aurvedic drugs and environmental samples.  相似文献   

13.
Bis(trifluoromethyl)zinc and methyl(trifluoromethyl)zinc have been identified by 19F and 1H NMR methods. The compounds were formed in the following reactions: (1) dimethylzinc and bis(trifluoromethyl)mercury and (2) dimethylzinc and bis(trifluoromethyl)cadmium.  相似文献   

14.
Zinc, cadmium, and lead react quantitatively in the pH ranges of 3.9–9.2, 3.5–11.2, and 5.5–10.5, respectively, to form water insoluble and thermally stable complexes which are easily extracted into molten naphthalene. The solid naphthalene containing the colorless complex is dissolved in chloroform and then replaced by copper to develop a yellow color in the chloroform layer. The absorbance in each case is measured at 435 nm against reagent blank. Beer's law holds over the concentration ranges of 3.5–95.0, 3.0–105.0, and 8.5–125. 0 μg for zinc, cadmium, and lead, respectively, into 10 ml of the chloroform solution. The molar absorptivities are calculated to be Zn, 1.048 × 104 liters mol−1 cm−1; Cd, 1.054 × 104 liters mol−1 cm−1, and Pb, 1.014 × 104 liters mol−1 cm−1 with sensitivities in terms of Sandell's definition of 0.0062 μg Zn/cm2, 0.010 μg Cd/cm2, and 0.020 μg Pb/cm2, respectively. Ten replicate determinations of sample solutions containing 30 μg of zinc, 18.7 μg of cadmium, and 42.5 μg of lead give mean absorbances 0.480, 0.175, and 0.208 with standard deviations of 0.0017, 0.0013, and 0.0015 or relative standard deviations of 0.35, 0.74, and 0.72%, respectively. The interference of various ions has been studied and the method has been applied to the determination of cadmium in various synthetic mixtures and zinc and lead in some standard reference materials.  相似文献   

15.
The concentrations of cadmium, nickel, and zinc in standard solutions were determined by energy-dispersive X-ray fluorescence analysis of deposits prepared by flow electrolysis on graphite cloth electrodes. Reduction of the metal species in solution was complete only if cadmium or zinc was the major constituent (80 or 90 mole%, respectively). Deposits of cadmium and zinc, and cadmium-rich Cd---Ni, Cd---Zn, and Cd---Ni---Zn deposits were analysed. For pure metals the detected X-ray intensity displayed a power-law relationship, Rnp, for up to 10−4 moles. The enhancement effect of the cadmium on the nickel and zinc signals, and the absorption and enhancement effects between nickel and zinc, were corrected empirically. The absorption of cadmium X-rays by nickel and zinc was insignificant. Deposits of pure copper on heavier electrodes displayed similar fluorescent intensities.  相似文献   

16.
A simple and highly sensitive extraction—spectrophotometric determination of cadmium is described. The ion-associate formed between the cadmium-PAR anionic chelate and cetyldimethylbenzylammonium chloride (CDBA) is extracted with chloroform at pH 10. The absorption maximum of the extracted species occurs at 505 nm, the molar absorptivity being (9.82 ± 0.30) × 104 l mol-1 cm-1. The optimal concentration range for measurements is 0.2–1.0 μg Cd ml-1; Beer's law is obeyed. The composition of the ion-associate is estimated to be CdPAR2-2CDBA. The conditional extraction constant is log K'ex ≈ 8. The stability constant of the cadmium—PAR chelate in aqueous solution is log β2 = 17.5 ± 0.3. Extraction with N-benzoyl-N-phenylhydroxylamine is used to avoid several interferences. Moderate amounts of zinc are masked with sodium hydroxide.  相似文献   

17.
A new graphite furnace atomizer has been developed and applied to the determination of cadmium, zinc, and lead by non-dispersive atomic fluorescence spectrometry. A solar-blind photomultiplier, a lock-in amplifier, and microwave-excited electrodeless discharge lamps are used. The detection limits for cadmium, zinc, and lead in the non-dispersive atomic fluorescence mode are 1·10?13g, 2·10?13g, and 2·10?11g, respectively, which are 20-, 10-, and 2-fold better than those in the atomic absorption mode. The analytical working curves are linear over about three decades of concentration from the detection limits.  相似文献   

18.
Analytical procedures for the determination of zinc(II), cadmium (II), lead(II) and copper(II) in sea water by potentiometric stripping analysis are described. The results are compared with those obtained by a combined solvent extraction-atomic absorption method both in the laboratory and on-board ship. The detection limits for zinc, cadmium, lead and copper are 0.03, 0.03, 0.01 and 0.02 μg l-1, respectively, for a total analysis time of about 75 min. A very thin mercury film is useful in the determination of lead and copper.  相似文献   

19.
《Analytical letters》2012,45(6):1223-1234
Abstract

The stripping potentiometric determination of lead, cadmium and copper with mercury film glassy-carbon electrodes coated with a Nafion membrane was investigated. The mercury film was plated using either mercury(II) acetate encapsulated within the Nafion membrane or a mercury(II) solution. Dissolved dioxygen was used as the stripping agent. The electrodes showed promising properties, particularly robustness and response repeatability. A linear dependence of the stripping time on concentration was found in the μg l?1 concentration range (s.d. of intercept ≤ 0.3 μg l?1, r.s.d. of slope ≤ 1%, for both lead and cadmium).  相似文献   

20.
Adsorption behavior of zinc, cadmium and mercury ions on hydrous titanium oxide in aqueous solution has been studied as a function of concentration of the metal ion (10−2−10−7M), temperature (303–333 K) and pH 3–10 by applying radiotracer technique. The kinetics of adsorption follows the first order rate law and agrees well with the classical Freundlich isotherm. The removal was found to increase with increasing pH but was suppressed in the presence of EDTA. The overall process is endothermic and irreversible in nature. Part VII. Efficient removal of cadmium ions from aqueous solutions by hydrous manganese oxideS. P. Mishra, D. Tiwary, Radiochim. Acta, 80 (1998) 213.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号