首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Effects of oxidation and surface roughness on contact angle   总被引:1,自引:0,他引:1  
Contact angle is known to be a parameter that effects boiling. This study was undertaken to measure contact angle of high and low surface tension fluids on copper and aluminum surfaces.Data were taken for polished, oxidized, and rough surfaces. A simple, yet fairly accurate method of measuring the static equilibrium contact angle of a solid/liquid interface is presented. The principles of a line light source and tilting plate were modified and then combined in the design of this apparatus. The angles obtained and their variation with the solid surface properties were in good agreement with previously published data. The contact angle of distilled water o of the organic fluids and refrigerants tested were in the range of 2–5°. Roughness and oxidation reduce the contact angle. If the depth of the roughness is less than 0.5 μm contact angle. The apparatus is fairly simple in construction, is inexpensive, and has good reproductibity. The measured angles were then compared to those measured with the sessile drop method.  相似文献   

2.
An experimental study has been conducted to investigate the condensate carryover phenomena in dehumidifying heat exchangers. Two wavy finned-tube coils were tested, for which the fin surfaces were treated to provide either low or high contact angles. The receding contact angle on the fins of the two coils were 70° and 10°, respectively. The distribution of condensate carryover was measured along the tunnel bottom downstream from the coil for different air frontal velocities. As the frontal velocity increases, the quantity of condensate carryover increases, and the condensate is blown further from the coil. The receding contact angle on the fin surface is a key factor controlling the condensate carryover characteristics. The coil having a 10° receding contact angle shows significantly less condensate carryover than the coil having a 70° receding contact angle. Numerous condensate droplets and bridges were observed on the fin surfaces of the 70° receding contact angle coil; however, few were seen for the 10° receding contact angle coil. The dominant carryover results from droplets formed from bridged condensate, and the diameter of the resulting droplets is approximately 3.0 mm.  相似文献   

3.
Epoxy coatings with good adhesion characteristics have been developed that are suitable for large-scale manufacturing and application in compact heat exchangers. Two of them, with a static contact angle for water of 105° and 79° have been tested in a finned-tube condenser comparing flat plate minichannels on the gas-side. Contrary to the expectation, the thermal efficiency of the 105° condenser is slightly less than that of the 79° one. This is due to a reduction of condensate drop size at detachment, resulting in relatively small dry paths after drainage. In the present study, geometry and coating thickness of the two coated exchangers used have not been optimized, since emphasis has been on the effect of contact angle. The finned-tube geometry is shown to be less favourable, for a condenser, than the compact cross-flow plate geometry with minichannels on both the gas- and coolant side that was tested previously.  相似文献   

4.
Surface protection for AA8090 aluminum alloy by diffusion bonding   总被引:1,自引:0,他引:1  
The solid state diffusion bonding process is performed using a liquid film protection (LFP) method for AA8090 aluminum alloy in contrast to the more costly vacuum environment. After chemical etching and prior to bonding, aluminum sheets were immersed in dehydrated alcohol to isolate surface from air. Two sheets are then joined with a special clamp to form a specimen which is press-deformed and heated in a salt bath. Protecting liquid film completely volatilizes on heating to bonding temperature thus keeping bonding surface free from oxidation. Effectiveness of the LFP-method is demonstrated in various combinations of process parameters. The contact ratio, in particular, is an important index for bonding strength.  相似文献   

5.
Consideration is given to the nonlinear problem on a shape of boundary between two viscous liquids, of which one displaces the other one from a solid surface, the Reynolds number being rather low. An asymptotic theory of wetting dynamics is developed that is of the second order with respect to small capillary numbers and valid for any ratio of viscosity coefficients of the media. A formula describing the dynamic contact angle (i.e. the inclination angle of the tangent to the interface) as a function of a distance to the solid is derived. Limitations on the angles for which the second-order theory is valid are shown. If the phase 2 viscosity is zero, the asymptotic second-order theory is valid for angles below 128.7°. A theory applicability domain depends on the ratio of viscosity coefficients. The applicability domain is not limited if the viscosity coefficients differ by a factor of less than four.  相似文献   

6.
The movement of the liquid column inside the slit was utilized to experimentally simulate the characteristics of the capillary force per unit length for different rough flat surfaces. The movement of the liquid column was achieved by continuously changing the slit interval. The maximum climb height and contact angle of the liquid column were observed during this process to study the relationship between capillary force and contact surface roughness. Based on the assumption that the microstructures on the rough surfaces are of the same form and continuously and uniformly distributed, it is shown that the capillary force per unit length under homogeneous wetting is independent of the roughness. For heterogeneous wetting, the capillary force per unit length is positively correlated with the roughness. The results also indicate that the appearance of “contact line pinning” is caused by insufficient capillary force along the direction of liquid column movement.  相似文献   

7.
微/纳器件表面微观粗糙结构间由于液体介质而引起的弯月面力和黏着力是导致器件精度降低乃至失效的主要原因之一。通过建立微/纳米尺度上球面-平面接触的物理模型,基于Young-Laplace方程和Reynolds润滑理论,分析得到粗糙表面接触分离过程中弯月面力和黏着力的计算公式。在此基础上,计算得到接触表面分离过程中的弯月面形状变化规律,并分别讨论了固体表面分离距离、液滴初始弯月面高度、固体表面润湿性能和分离时间等因素对弯月面力和黏着力的影响。研究结果为微/纳米表面抗黏着机理提供了理论依据。  相似文献   

8.
A method for the numerical simulation of the dynamic response of the contact angle is presented and its development discussed. The proposed method was developed within a level-set framework by modelling forced capillary flows and it is based on the introduction of a force function to capture the balance of forces in the contact region between solid boundaries and a diffuse free-surface fluid interface. The proposed approach allows the system to define its own dynamic contact angle and its own contact line dynamics, without introducing numerical discontinuities such as locally prescribed angles or slip-length. The method was developed through numerical testing and comparisons with experimental and empirical models reported in the literature. These showed the validity of the proposed approach, which was able to reproduce the experimental correlation between the capillary number and the dynamic contact angle reported by [R.L. Hoffman, Study of advancing interface. 1. Interface shape in liquid-gas systems, J. Colloid Interf. Sci. 50 (1975) 228-241]. By using a single constitutive model for the force function, the simulation results of the dynamic contact angle showed an excellent agreement with the values predicted by Jiang’s empirical equation [T.S. Jiang, O.H. Soo-Gun, J.C. Slattery, Correlation for dynamic contact angle, J. Colloid Interf. Sci. 69 (1979) 74-77] through different material properties and flow speeds. The proposed approach also demonstrated the ability to work with meshes of low resolution.  相似文献   

9.
An experimental study was carried out to investigate the effects of heat transfer surface orientation and the solid–liquid contact angle on the boiling heat transfer and critical heat flux (CHF) in water pool boiling using a smooth heat-transfer surface under atmospheric pressure. The orientation angle was ranged from 0° (up-facing horizontal position) to 180° (down-facing horizontal position) with a pace of 45°. The three kinds of heat transfer surfaces having different solid–liquid contact angles were the normal surface with a contact angle of 55°, the hydrophilic surface with a contact angle of 30° and the superhydrophilic surface with a contact angle of 0°. The experimental results indicate that orientation and contact angle have complex, coupling effects on heat transfer and CHF. A predicting correlation for the CHF which takes the effects of both orientation and contact angle into account is established. The predicting correlation agrees reasonably well with the experimental data.  相似文献   

10.
Our purpose is to design a high heat flux micro-evaporator that can remove more than 100 W/cm2. For this purpose a thin liquid film is evaporized. The liquid film is stabilized in micro-channels by capillary forces. The micro-channels are fabricated by chemical etching on silicon to reduce thermal resistance. For the experiments, the channel plate is heated by an ITO thin film heater deposited on the opposite side of the channel plate. Influence of heat flux, coolant flow rate, and inlet temperature on the temperature of the heater element are investigated. Water is used as working fluid. A maximal heat flux of 125 W/cm2 could be achieved for water inlet temperature of 90 °C and flow rate of 1.0 mL/min. The temperature of the heater element is kept constant at about 120 °C with fluctuations within 8 °C. The measured pressure drop is less than 1000 Pa.  相似文献   

11.
The present work is aimed at analyzing the cooling of hot solid surfaces induced by liquid droplets. In particular, the study is focused on the non-intrusive measurement of the transient contact temperature between impinging droplets and hot solid surfaces.

An experimental apparatus was built and set up in order to approach the non-trivial problem of the measurement of a solid–liquid interface temperature after droplet impingement. The solid–liquid interface temperature was monitored from below through a transparent-to-infrared material. That material had been coated with a very thin layer of high-emissivity, opaque paint on its upper side, so that it could effectively respond to the infrared camera located below.

The paper reports the main results that have been collected to date, with particular regard to the approaches used to coat the transparent solid. Some considerations are also expressed about the effectiveness of the proposed method and about the improvements that are currently being implemented to get new and more accurate interface temperature measurements.  相似文献   


12.
Experimental condensation heat transfer data for the new refrigerant R1234ze(E), trans-1,3,3,3-tetrafluoropropene, are presented and compared with refrigerants R134a and R236fa for a vertically aligned, aluminum multi-port tube. Local condensation heat transfer measurements with such a multi-microchannel test section are very challenging due to the large uncertainties related to the heat flux estimation. Presently, a new experimental test facility was designed with a test section to directly measure the wall temperature along a vertically aligned aluminum multi-port tube with rectangular channels of 1.45 mm hydraulic diameter. Then, a new data reduction process was developed to compute the local condensation heat transfer coefficients accounting for the non-uniform distribution of the local heat flux along the channels. The condensation heat transfer coefficients showed the expected decrease as the vapor quality decreased (1.0-0.0) during the condensation process, as the mass velocity decreased (260-50 kg m−2 s−1) and as the saturation temperature increased (25-70 °C). However, the heat transfer coefficients were not affected by the condensing heat flux (1-62 kW m−2) or by the entrance conditions within the tested range. It was found that the heat transfer performance of R1234ze(E) was about 15-25% lower than for R134a but relatively similar to R236fa. The experimental data were then compared with leading prediction methods from the literature for horizontal channels. In general, the agreement was poor, over-predicting the high Nusselt number data and under-predicting the low Nusselt number data, but capturing the mid-range quite well. A modified correlation was developed and yielded a good agreement with the current database for all three fluids over a wide range of operating conditions.  相似文献   

13.
This work presents the results of an experimental study with pure refrigerants R-134a and R-600a and refrigerant–oil mixtures flowing through capillary tubes in order to analyse the metastable flow. A large number of experiments were carried out to verify the influence of several variables on the underpressure of vaporization, mainly the inlet subcooling, internal diameter and inlet pressure. Capillary tubes with internal diameter of 0.69 mm and 0.82 mm were tested for condensation temperatures between 40 °C and 50 °C and subcooling degrees between 3 °C and 12 °C. Measurements for oil concentrations of 1% and 3% were conducted and compared with those for pure refrigerant R-134a. The oil influence on the metastable flow was tested and the effect on the underpressure of vaporization is addressed for lower oil concentrations.  相似文献   

14.
The evaporative heat flux distribution in the leading edge region of a moving evaporating thin liquid film of pentane on quartz was obtained by analyzing the measured thickness profile for thicknesses, δ < 2 μm. The profiles in a constrained vapor bubble were obtained using image analyzing interferometry. Although the evaporating meniscus appeared to be benign (i.e., without additional observed motion beyond creeping), high heat fluxes were obtained. Significantly higher heat fluxes are possible. The interfacial slope, curvature, interfacial shear stress, and liquid pressure profiles were also obtained. Results obtained using a continuum model were consistent with those obtained using a control volume model. The measured pressure field profile of the isothermal extended meniscus agreed with the constant pressure field predicted by the augmented Young–Laplace model. For the non-isothermal case, measured thickness gradients lead to disjoining pressure and curvature gradients for fluid flow and evaporation. The experimental results demonstrate that disjoining pressure at the contact line controls fluid flow within an evaporating completely wetting thin curved film and is, therefore, a useful boundary condition. However, in small interfacial systems, non-idealities can have a dramatic effect.  相似文献   

15.
The in-tube cooling flow and heat transfer characteristics of R134a at supercritical pressures are measured experimentally for various pressures and mass fluxes in a horizontal tube. The tube is made of stainless steel with an inner diameter of 4.01 mm. Experiments are conducted for mass fluxes from 70 kg/m2 s to 405 kg/m2 s and pressures from 4.5 MPa to 5.5 MPa. The inlet refrigerant temperature is from 80 °C to 140 °C. The results show that the refrigerant temperature, the mass flux and the pressure all significantly affect the flow and heat transfer characteristics of R134a at supercritical pressures. The experimentally measured frictional pressure drop and heat transfer coefficient are compared with predicted results from several existing correlations. The comparisons show that the predicted frictional pressure drop using Petrov and Popov’s correlation accounting for the density and viscosity variations agree well with the measured data. Gnielinski’s correlation for the heat transfer coefficient agrees best with the measured data with deviations not exceeding 25%, while correlations based on supercritical CO2 heat transfer data overcorrect for the influence of the thermophysical property variations resulting in larger deviations. A new empirical correlation is developed based on the measured results by modifying Gnielinski’s equation with thermophysical property terms including both the property variations from the inlet to the outlet of the entire test section and from the bulk to the wall. Most of the experimental data is predicted by the new correlation within a range of 15%.  相似文献   

16.
Side forces on slender bodies of revolution at medium to high angles of attack (AOA > 30°) has been known from a large number of investigations. Asymmetric vortex pairs over a slender body are believed to be the principle cause of the side forces. Under some flight conditions, this side force may be as large as the normal force acting on the slender body. In this paper, experimental results are presented for side force control on a cone-cylinder slender body by using microfabricated balloon actuators. The micro balloon actuators are made of polydimethylsiloxane (PDMS) elastomer by using micro molding techniques. They can be packaged on curve surfaces of a cone-cylinder slender body. As actuator is actuated, the micro balloon actuator inflates about 1.2 mm vertically, which is about 2.4% of the cylinder diameter D (=50 mm) of the cone-cylinder slender body. Micro balloon actuators are actuated at different roll angles of a cone-cylinder slender body. Aerodynamic force measurement results indicate the effects of micro balloon actuators vary at different actuation locations on the cone-cylinder slender body. The side forces can be significantly reduced if the actuators are actuated in the weak vortex side (the side corresponding to the asymmetric vortex which is far from the surface) and actuation angles are located at about 50–60° (the actuation angle here is measured from stagnation line of the incidence plane toward weak vortex side direction). Significant changes are noticed from the surface pressure, as well as leeside vortex flow field, measurement. Micro balloon actuators change nose shapes of the slender body which decide adverse-pressure-gradient values and directly influence the origin of the separation lines and characteristics of the separated vortices over the leeside surface.  相似文献   

17.
微通道内气液自发渗吸是广泛发生在自然界及诸多工业领域的物理现象,而动态接触角是影响整个渗吸过程的关键因素.针对该问题,本文使用改进的伪势多相流格子玻尔兹曼方法 (LBM),直接捕捉微通道内气液自发渗吸过程中的实时接触角,并分析接触角的动态变化特性及其对渗吸长度的影响.首先,本文在原始的伪势多相流LBM的基础上耦合Peng-Robinson (PR)状态方程,改进流体-流体作用力以及流-固作用力格式,并采用精确差分方法将外力添加至LBM框架中.然后,通过校准模型的热力学一致性,模拟测试界面张力,静态平衡接触角等界面现象验证了模型的准确性.最后,基于建立的模拟方法,在水平方向上模拟微通道内气液自发渗吸过程.结果表明:渗吸过程中的接触角呈现动态变化特征,在渗吸初期,因受到惯性力的影响存在较大波动;随着渗吸距离的增大,其逐渐减小并趋近于静态平衡接触角.渗吸过程中的接触角与微通道尺寸及静态接触角有关,随着微通道宽度增大,实时的动态接触角与静态接触角相差大;随着静态接触角增大,实时的动态接触角与静态接触角的相差增大.此外,忽略动态接触角的Lucas-Washburn (LW)方程所预测的弯液面位置...  相似文献   

18.
An experimental investigation has been carried out to study the heat transfer characteristics during evaporation of R-134a inside a single helical microfin tube. The microfin tube has been provided with different tube inclination angles of the direction of fluid flow from horizontal, α. The experiments were performed for seven different tube inclinations, α, in a range of −90° to +90° and four mass velocities of 53, 80, 107 and 136 kg/m2 s for each tube inclination angle during evaporation of R-134a. The results demonstrate that the tube inclination angle, α, affects the boiling heat-transfer coefficient in a significant manner. For all refrigerant mass velocities, the best performing tube is that having inclination angle of α = +90°. The effect of tube inclination angle, α, on heat-transfer coefficient, h, is more prominent at low vapor quality and mass velocity. An empirical correlation has also been developed to predict the heat-transfer coefficient during flow boiling inside a microfin tube with different tube inclinations.  相似文献   

19.
Correlation of swirl number for a radial-type swirl generator   总被引:1,自引:0,他引:1  
An experimental investigation was undertaken to derive a new correlation for the swirl number of a radial-type swirl generator under various Reynolds numbers and various vane angle conditions. A radial-type swirl generator with 16 rotary guide vanes was used to generate an annular swirling jet flow. The Reynolds numbers ranged from 60 to 6000, and the vane angles from 0° to 56°. Quantitative measurements for the velocities were made by using an optical method of laser-Doppler anemometry (LDA). Three-component velocity profiles of axial, radial, and azimuthal components at the swirling jet exit were measured for various flow conditions. A flow visualization method using smoke-wire and still photography was also applied to observe the flow patterns of the recirculation region behind the circular bluff body. Under low Reynolds number conditions, the swirl strength was found to be strongly dependent on the Reynolds number as well as on the guide vane angle. Based on the experimental results, a modified swirl number S is derived to characterize the swirling flow, which is useful for the design of a swirl generator.  相似文献   

20.
An experimental study has been performed of the effects of a liquid film on a particle rolling on a planar surface using a combination of laser-induced fluorescence and particle-image velocimetry. Contact angle hysteresis leads to asymmetry of the liquid meniscus, resulting in a difference in contact angle between the front and rear sections of the meniscus relative to the rolling particle. This asymmetry results in a capillary torque that resists the rolling motion of the particle. The particle rolling motion also induces a viscous transport of fluid from the front to the rear of the particle, which acts to shift the location of the contact point. The laser-induced fluorescence method is used to characterize the meniscus asymmetry and the resulting change in contact angle on the two sides of the particle. Particle-image velocimetry in various horizontal and vertical cross-sectional planes is used to examine the flow trajectories and velocity magnitude within the meniscus in the presence of rolling. All experiments are conducted at small capillary number, so that the meniscus is approximately circular in shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号