首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Porous carbon materials with high surface area and different pore structure have been successfully prepared by phenolic resin combined with polyvinyl alcohol (PVA) and KOH as activation agents. The surface morphology, structure, and specific surface area of the carbon materials were studied by scanning electron microscopy, X-ray diffraction, and nitrogen sorption measurement, respectively. Furthermore, the effects of specific surface area, pore structure, and electrolyte on electrochemical properties were investigated by galvanostatic charge–discharge measurement. The results show that KOH–PVA-activated carbon materials display specific capacitance as high as 218 F?g?1 in 30 wt.% KOH aqueous electrolyte, 147 F?g?1 in 1 M LiPF6/(ethylene carbonate (EC) + dimethyl carbonate) (1:1?v/v), and 115 F?g?1 in 1 M Et3MeNBF4/propylene carbonate organic electrolyte, respectively. In addition, the carbon materials demonstrate long-term cycle stability, especially the AK3P-0.30 in aqueous electrolyte and the AK2P-0.30 with excellent rate capability in organic electrolyte. These reveal that the existence of a micro-mesoporous structure of activated carbon is beneficial to store energy in an aqueous supercapacitor and broad pore size distribution of activated carbon is favorable to energy storage in an organic supercapacitor. The carbon materials with pore size distribution in different ranges improve the electrochemical performance of supercapacitor in different electrolytes. A new pore-expand agent (PVA combining with KOH) was used to obtain porous carbons with enhanced properties for supercapacitor.  相似文献   

2.
In the developing of wearable electronics and smart textiles, thin, lightweight, and flexible energy storage supercapacitor with high energy density has attracted the attention of many researchers in recent years. In this work, we prepared gel nano-composite electrolyte with the hypergrafted poly (amine-ester) nano-silica (HBPAE-SiO2) as inclusion. The electrochemical properties of the supercapacitor with the alkaline polymer electrolyte were evaluated by cyclic voltammetry, galvanostatic charge–discharge behavior, and electrochemical impedance spectroscopy. It was found that the incorporated HBPAE-SiO2 can greatly increase the specific capacitance of the supercapacitor, which was due to the enhanced ionic conductivity of gel electrolyte as well as good electrode–electrolyte contact. It is pointed out that the electroactivity of the inclusion may be also one reason. The best specific capacitance with 30 wt% HBPAE-SiO2 reached 160 F g?1, which was increased by 36.5 % compared with that of polyvinyl alcohol (PVA)-KOH system. Moreover, the capacity retention of solid-state supercapacitor can be 88 % after 10,000 cycles. The hypergrafted nano-silica modified polymer gel electrolyte is promising for the application of solid-state supercapacitor.  相似文献   

3.
《Solid State Sciences》2012,14(5):598-606
Gel polymer electrolytes containing 1-ethyl-3-methylimidazolium-bis (trifluoromethyl-sulfnyl)imide (EMITFSI) ionic liquid were prepared for lithium ion batteries by solution casting method. Thermal and electrochemical properties have been determined for the gel polymer electrolytes. Proper addition of EMITFSI to the P(VdF-HFP)-LiTFSI polymer electrolyte improves the ionic conductivity and electrochemical window to 2.11 × 10−3 S cm−1 (30 °C) and 4.6 V. In combination of the prepared ternary P(VdF-HFP)-LiTFSI-EMITFSI ionic liquid polymer electrolytes, Li4Ti5O12 anode exhibited two extra voltage plateaus around 1.1 V and 2.3 V except the typical voltage plateau around 1.6 V by possible side reaction between ionic liquid and polymer. LiFePO4 cathode exhibited high capacity above 140 mA h g−1 and retention of 93.1% due to the suppressed polarization effect caused by enhanced ion transport properties. The high temperature of 80 °C didn't have significant impact on the cycling performance.  相似文献   

4.
Electrolytes with high lithium-ion conductivity, better mechanical strength and large electrochemical window are essential for the realization of high-energy density lithium batteries. Polymer electrolytes are gaining interest due to their inherent flexibility and nonflammability over conventional liquid electrolytes. In this work, lithium garnet composite polymer electrolyte membrane (GCPEM) consisting of large molecular weight (Wavg ~?5?×?106) polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and lithium garnet oxide Li6.28Al0.24La3Zr2O12 (Al-LLZO) is prepared by solution-casting method. Significant improvement in Li+ conductivity for Al-LLZO containing GCPEM is observed compared with the Al-LLZO free polymer membrane. Maximized room temperature (30 °C) Li+ conductivity of 4.40?×?10?4 S cm?1 and wide electrochemical window (4.5 V) is observed for PEO8/LiClO4?+?20 wt% Al-LLZO (GCPEM-20) membrane. The fabricated cell with LiCoO2 as cathode, metallic lithium as anode and GCPEM-20 as electrolyte membrane delivers an initial charge/discharge capacity of 146 mAh g?1/142 mAh g?1 at 25 °C with 0.06 C-rate.  相似文献   

5.
The present investigation deals with electrochemical double layer capacitors (EDLCs) made up of ionic liquid (IL)-based gel polymer electrolytes with chemically treated activated charcoal electrodes. The gel polymer electrolyte comprising of poly(vinylidine fluoride-co-hexafluropropylene) (PVdF-HFP)–1-ethyl-2,3-dimethyl-imidazolium-tetrafluroborate [EDiMIM][BF4]–propylene carbonate (PC)–magnesium perchlorate (Mg(ClO4)2) exhibits the highest ionic conductivity of ~8.4?×?10?3?S?cm?1 at room temperature (~20 °C), showing good mechanical and dimensional stability, suitable for their application in EDLCs. Activation of charcoal was done by impregnation method using potassium hydroxide (KOH) as activating agent. Brunauer–Emmett–Teller (BET) studies reveal that the effective surface area of treated activated charcoal powder (1,515 m2?g?1) increases by more than double-fold compared to the untreated one (721 m2?g?1). Performance of EDLCs has been tested using cyclic voltammetry, impedance spectroscopy, and charge–discharge techniques. Analysis shows that chemically treated activated charcoal electrodes have almost triple times more capacitance values as compared to the untreated one.  相似文献   

6.
《印度化学会志》2023,100(4):100959
The polymer-ceramic composite electrolytes have great application potential for next-generation solid state lithium batteries, as they have the merits to eliminate the problem of liquid organic electrolytes and enhancing chemical/electrochemical stability. However, polymer-ceramic composite electrolytes show poor ionic conductivity, which greatly hinders their practical applications. In this work, the addition of plasticizer ethylene carbonate (EC) into polymer-ceramic composite electrolyte for lithium batteries effectively promotes the ionic conductivity. A high ionic conductivity can be attained by adding 40 wt% EC to the polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)-Li7La3Zr2O12 (LLZO) based polymer-ceramic composite electrolytes, which is 2.64 × 10−4 S cm−1 (tested at room temperature). Furthermore, the cell assembled with lithium metal anode, this composite electrolyte, and LiFePO4 cathode can work more than 80 cycles at room temperature (tested at 0.2 C). The battery delivers a high reversible specific capacity after 89 cycles, which is 119 mAh g−1.  相似文献   

7.
Porous nitrogen-doped graphene (PNG) has been prepared via simple thermal treatment of graphene oxide and urea, and the morphology and structure of the PNG have been characterized by using a range of electron microscopy, X-ray photoelectron spectroscopy, and other techniques. The electrochemical performances of the PNG have been investigated in an ionic liquid electrolyte by cyclic voltammetry and galvanostatic charge-discharge via both three-electrode and two-electrode configurations. The PNG electrode delivers a specific capacitance of 310 F g?1 at 1 A g?1 with good cycling stability over 4000 cycles. The high electrochemical performance is ascribed to the porous structure and nitrogen-doping in the PNG. The porous structure enables high specific surface area and rapid ion mobility, contributing to double layer capacitance, while the N-doping enhances electrochemical activity and electric conductivity, contributing to pseudocapacitance. Meanwhile, the ionic liquid electrolyte enables a very wide working voltage of 3 V, leading to a high energy density up to 163.8 W h kg?1. The fabricated supercapacitor can light up a LED for a long while with low self-discharge, showing good potential for practical application.  相似文献   

8.
All‐solid‐state sodium batteries, using solid electrolyte and abundant sodium resources, show great promise for safe, low‐cost, and large‐scale energy storage applications. The exploration of novel solid electrolytes is critical for the room temperature operation of all‐solid‐state Na batteries. An ideal solid electrolyte must have high ionic conductivity, hold outstanding chemical and electrochemical stability, and employ low‐cost synthetic methods. Achieving the combination of these properties is a grand challenge for the synthesis of sulfide‐based solid electrolytes. Design of the solid electrolyte Na3SbS4 is described, realizing excellent air stability and an economic synthesis based on hard and soft acid and base (HSAB) theory. This new solid electrolyte also exhibits a remarkably high ionic conductivity of 1 mS cm?1 at 25 °C and ideal compatibility with a metallic sodium anode.  相似文献   

9.
New polymer gel electrolytes based on polyester diacrylates and LiClO4 salt solutions in organic solvents are developed for lithium ion and lithium polymer batteries with a high ionic conductivity up to 2.7 × 10?3 Ohm?1cm?1 at the room temperature. To choose the optimum liquid electrolyte composition, the dependence is studied of physico-chemical parameters of new gel electrolytes on the composition of the mixture of aprotic organic solvents: ethylene carbonate, propylene carbonate, and λ-butyrolacton. The bulk conductivity of gel electrolytes and exchange currents at the gel electrolyte/Li interface are studied using the electrochemical impedance method in symmetrical cells with two Li electrodes. The glass transition temperature and gel homogeneity are determined using the method of differential scanning calorimetry. It is found that the optimum mixture is that of propylene carbonate and λ-butyrolacton, in which a homogeneous polymer gel is formed in a wide temperature range of ?150 to +50°C.  相似文献   

10.
New activated nanoporous carbons, produced by carbonization of mixtures of coal tar pitch and furfural with subsequent steam activation, as well as electrochemically active oxide Li4Ti5O12, prepared by thermal co-decomposition of oxalates, were tested and characterized as electrode materials for electrochemical supercapacitors. The phase composition, microstructure, surface morphology and porous structure of the materials were studied. Pure carbon electrodes as well as composite electrodes based on these materials obtained were fabricated. Two types of supercapacitor (SC) cells were assembled and subjected to charge–discharge cycling study at different current rates: (1) symmetric sandwich-type SC cells with identical activated carbon electrodes and different organic electrolytes, and (2) asymmetric hybrid SC cell composed by activated graphitized carbon as a negative electrode and activated carbon–Li4Ti5O12 oxide composite as a positive electrode, and an organic electrolyte (LiPF6–dimethyl carbonate/ethylene carbonate (DMC/EC). Four types of carbons with different specific surface area (1,000–1,600 m2 g?1) and texture parameters, as well as three types of organic electrolytes: Et4NBF4–propylene carbonate (PC), LiBF4–PC and LiPF6–DMC/EC in the symmetric SC cell, were tested and compared with each other. Capacitance value up to 70 F g?1 for the symmetric SC, depending on the electrolyte microstructure and conductivity of the carbon material used, and capacitance of about 150 F g?1 for the asymmetric SC cell, with good cycleability for both supercapacitor systems, were obtained.  相似文献   

11.
In this contribution, we report a new type of poly (ionic liquids) prepared by imidazolium ionic liquids directly grafting onto polyethylene oxide backbone. Different molecular weights of poly (ionic liquids) are obtained with a low glass transition temperature up to ?14 °C. The materials as polymer electrolyte achieve a high conductivity around 10?5 S cm?1 at 30 °C and close to 10?3 S cm?1 at 90 °C. High viscosity up to 4000 Pa s at room temperature would minimize the electrolytes leaking in electrochemical devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2104–2110  相似文献   

12.
New solid polymer electrolytes are developed for a lithium power source used at the temperatures up to 100°C. Polyester diacrylate (PEDA) based on oligohydroxyethylacrylate and its block copolymers with polyethylene glycol were offered for polymer matrix formation. The salt used was LiClO4. The ionic conductivity of electrolytes was measured in the range of 20 to 100°C using the electrochemical impedance method. It is shown that the maximum conductivity in the whole temperature range is characteristic of the electrolyte based on the PEDA copolymer and polyethylene glycol condensation product (2.8 × 10?6 S cm?1 at 20°C, 1.8 × 10?4 S cm?1 at 95°C).  相似文献   

13.
The cross-linking gel copolymer electrolytes containing alkyl acrylates, triethylene glycol dimethacrylate, and liquid electrolyte were prepared by in situ thermal polymerization. The gel polymer electrolytes containing 15 wt% polymer content and 85 wt% liquid electrolyte content with sufficient mechanical strength showed the high ionic conductivity around 5?×?10?3 Scm?1 at room temperature. The gel electrolytes containing different polymer matrices were prepared, and their physical observation and conductivity were discussed carefully. The cross-linking copolymer gel electrolytes of alkyl acrylates with other monomers were designed and synthesized. The results showed that copolymerization can improve the mechanical properties and ionic conductivities of the gel electrolytes. The polymer matrices of gels had excellent thermal stability and electrochemical stability. The scanning electron microscope analysis showed the gel electrolyte was the homogeneous structure, and the cross-linking polymer host was the porous three-dimensional network structure, which demonstrated the high conductivity of the gel electrolytes. The gel polymer Li-ion battery was prepared by this in situ thermal polymerization. The cell exhibited high charge-discharge efficiency at 0.1 C. The results of LiFePO4-PEA-Li cell and graphite-PEA-Li cell showed that gel polymer electrolytes have good compatibility with the battery electrodes materials.  相似文献   

14.
The effect of the dispersion of zinc oxide (ZnO) nanoparticles in the zinc ion conducting gel polymer electrolyte is studied. Changes in the morphology/structure of the gel polymer electrolyte with the introduction of ZnO particles are distinctly observed using X-ray diffraction and scanning electron microscopy. The nanocomposites offer ionic conductivity values of >10?3 S cm?1 with good thermal and electrochemical stabilities. The variation of ionic conductivity with temperature follows the Vogel–Tamman–Fulcher behavior. AC impedance spectroscopy, cyclic voltammetry, and transport number measurements have confirmed Zn2+ ion conduction in the gel nanocomposites. An electrochemical stability window from ?2.25 to 2.25 V was obtained from voltammetric studies of nanocomposite films. The cationic (i.e., Zn2+ ion) transport number (t +) has been found to be significantly enhanced up to a maximum of 0.55 for the dispersion of 10 wt.% ZnO nanoparticles, indicating substantial enhancement in Zn2+ ion conductivity. The gel polymer electrolyte nanocomposite films with enhanced Zn2+ ion conductivity are useful as separators and electrolytes in Zn rechargeable batteries and other electrochemical applications.  相似文献   

15.
设计合成了一种新型有机硅室温离子液体(SiN1IL), 并对其化学结构和电化学窗口进行表征, 通过与具有高介电常数的丙烯碳酸酯(PC)/低粘度的乙腈(AN)匹配组成电解液, 其离子电导率达到商业实际应用的要求(19.6 mS·cm-1). 对以活性炭(AC)为对称电极的超级电容器的电化学性能测试表明, SiN1IL 基电解液与活性炭有很好的界面相容性, 其高倍率充放电、阻抗性能优于商用四乙基四氟硼酸铵(Et4NBF4)/PC 电解液, 在电流密度为1000 mA·g-1的条件下, 工作电压为2.7 V, 其比电容为108 F·g-1.  相似文献   

16.
To promote the development of solid‐state batteries, polymer‐, oxide‐, and sulfide‐based solid‐state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high‐temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10?3 S cm?1), good air stability, wide electrochemical window, excellent electrode interface stability, low‐cost mass production is required. Herein we report a halide Li+ superionic conductor, Li3InCl6, that can be synthesized in water. Most importantly, the as‐synthesized Li3InCl6 shows a high ionic conductivity of 2.04×10?3 S cm?1 at 25 °C. Furthermore, the ionic conductivity can be recovered after dissolution in water. Combined with a LiNi0.8Co0.1Mn0.1O2 cathode, the solid‐state Li battery shows good cycling stability.  相似文献   

17.
This paper reports a novel strategy for preparing redox-active electrolyte through introducing a redox-mediator(p-phenylenediamine,PPD) into KOH electrolyte for the application of ball-milled MnO 2-based supercapacitors.The morphology and compositions of ball-milled MnO 2 were characterized using scanning electron microscopy(SEM) and X-ray diffraction(XRD).The electrochemical properties of the supercapacitor were evaluated by cyclic voltammetry(CV),galvanostatic charge-discharge(GCD),and electrochemical impedance spectroscopy(EIS) techniques.The introduction of p-phenylenediamine significantly improves the performance of the supercapacitor.The electrode specific capacitance of the supercapacitor is 325.24 F g-1,increased by 6.25 folds compared with that of the unmodified system(44.87 F g-1) at the same current density,and the energy density has nearly a 10-fold increase,reaching 10.12 Wh Kg-1.In addition,the supercapacitor exhibits good cycle-life stability.  相似文献   

18.
Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BmImTf) were prepared by solution casting technique. The ionic conductivity was found to increase with increasing ionic liquid concentration. Upon doping with 80 wt% of BmImTf, the ionic conductivity increased by three orders of magnitude. The highest ionic conductivity of (3.21 ± 0.01) × 10?4 S cm?1 was achieved at ambient temperature. The complexation between corn starch, LiPF6 and BmImTf was further proven in attenuated total reflectance-Fourier transform infrared findings. The highest conducting biopolymer electrolyte was stable up to 230 °C, as proven in thermogravimetric analysis.  相似文献   

19.
Hierarchical CuO nanosheets were synthesized through a facile, eco-friendly reflux deposition approach for supercapacitor electrode material for energy storage. The resultant CuO nanosheets were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherm techniques. The supercapacitor behavior of CuO nanosheets was investigated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in novel 0.1 M aqueous 1-(1′-methyl-2′-oxo-propyl)-3-dimethylimidazolium chloride [MOPMIM][Cl] ionic liquid as an electrolyte. The result demonstrate that CuO nanosheets exhibit specific capacitance of 180 F g?1 at 10 mV s?1 scan rate which is the highest value in ionic liquid electrolyte and 87% specific capacitance retention after 5000th cycle. The electrochemical performance proves CuO nanosheets as electrode with ionic liquid electrolyte for developing green chemistry approach in supercapacitor.
Graphical abstract As-synthesized, CuO nanosheets demonstrate excellent supercapacitor electrode performance with high specific capacitance of 180 F g?1 at 10 mV s?1 scan rate and 87% specific capacitance retention in 0.1 M aqueous [MOPMIM][Cl] IL electrolyte
  相似文献   

20.
A new plasticized nanocomposite polymer electrolyte based on poly (ethylene oxide) (PEO)-LiTf dispersed with ceramic filler (Al2O3) and plasticized with propylene carbonate (PC), ethylene carbonate (EC), and a mixture of EC and PC (EC+PC) have been studied for their ionic conductivity and thermal properties. The incorporation of plasticizers alone will yield polymer electrolytes with enhanced conductivity but with poor mechanical properties. However, mechanical properties can be improved by incorporating ceramic fillers to the plasticized system. Nanocomposite solid polymer electrolyte films (200–600 μm) were prepared by common solvent-casting method. In present work, we have shown the ionic conductivity can be substantially enhanced by using the combined effect of the plasticizers as well as the inert filler. It was revealed that the incorporating 15 wt.% Al2O3 filler in to PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity [σ RT (max)?=?7.8?×?10?6 S cm?1]. It was interesting to observe that the addition of PC, EC, and mixture of EC and PC to the PEO: LiTf: 15 wt.% Al2O3 CPE showed further conductivity enhancement. The conductivity enhancement with EC is higher than PC. However, mixture of plasticizer (EC+PC) showed maximum conductivity enhancement in the temperature range interest, giving the value [σ RT (max)?=?1.2?×?10?4 S cm?1]. It is suggested that the addition of PC, EC, or a mixture of EC and PC leads to a lowering of glass transition temperature and increasing the amorphous phase of PEO and the fraction of PEO-Li+ complex, corresponding to conductivity enhancement. Al2O3 filler would contribute to conductivity enhancement by transient hydrogen bonding of migrating ionic species with O–OH groups at the filler grain surface. The differential scanning calorimetry thermograms points towards the decrease of T g , crystallite melting temperature, and melting enthalpy of PEO: LiTf: Al2O3 CPE after introducing plasticizers. The reduction of crystallinity and the increase in the amorphous phase content of the electrolyte, caused by the filler, also contributes to the observed conductivity enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号