首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider the problem to find a market portfolio that minimizes the convex risk measure of the terminal wealth in a jump diffusion market. We formulate the problem as a two player (zero-sum) stochastic differential game. To help us find a solution, we prove a theorem giving the Hamilton–Jacobi–Bellman–Isaacs (HJBI) conditions for a general zero-sum stochastic differential game in a jump diffusion setting. We then use the theorem to study particular risk minimization problems. Finally, we extend our approach to cover general stochastic differential games (not necessarily zero-sum), and we obtain similar HJBI equations for the Nash equilibria of such games.  相似文献   

2.

In this work, we propose a class of numerical schemes for solving semilinear Hamilton–Jacobi–Bellman–Isaacs (HJBI) boundary value problems which arise naturally from exit time problems of diffusion processes with controlled drift. We exploit policy iteration to reduce the semilinear problem into a sequence of linear Dirichlet problems, which are subsequently approximated by a multilayer feedforward neural network ansatz. We establish that the numerical solutions converge globally in the \(H^2\)-norm and further demonstrate that this convergence is superlinear, by interpreting the algorithm as an inexact Newton iteration for the HJBI equation. Moreover, we construct the optimal feedback controls from the numerical value functions and deduce convergence. The numerical schemes and convergence results are then extended to oblique derivative boundary conditions. Numerical experiments on the stochastic Zermelo navigation problem are presented to illustrate the theoretical results and to demonstrate the effectiveness of the method.

  相似文献   

3.
In this paper, we study the existence of the solution to one-dimensional forward–backward stochastic differential equations with neither the smooth condition nor the monotonicity condition for the coefficients. Under the nondegeneracy condition for the forward equation, we prove the existence of the solution to one-dimensional forward–backward stochastic differential equations. And we apply this result to establish the existence of the viscosity solution to a certain one-dimensional quasilinear parabolic partial differential equation  相似文献   

4.
We consider a controlled system driven by a coupled forward–backward stochastic differential equation with a non degenerate diffusion matrix. The cost functional is defined by the solution of the controlled backward stochastic differential equation, at the initial time. Our goal is to find an optimal control which minimizes the cost functional. The method consists to construct a sequence of approximating controlled systems for which we show the existence of a sequence of feedback optimal controls. By passing to the limit, we establish the existence of a relaxed optimal control to the initial problem. The existence of a strict control follows from the Filippov convexity condition.  相似文献   

5.
In this paper, two stochastic predator–prey models with general functional response and higher-order perturbation are proposed and investigated. For the nonautonomous periodic case of the system, by using Khasminskii’s theory of periodic solution, we show that the system admits a nontrivial positive T-periodic solution. For the system disturbed by both white and telegraph noises, sufficient conditions for positive recurrence and the existence of an ergodic stationary distribution to the solutions are established. The existence of stationary distribution implies stochastic weak stability to some extent.  相似文献   

6.
We consider the controlled stochastic Navier–Stokes equations in a bounded multidimensional domain, where the noise term allows jumps. In order to prove existence and uniqueness of an optimal control w.r.t. a given control problem, we first need to show the existence and uniqueness of a local mild solution of the considered controlled stochastic Navier–Stokes equations. We then discuss the control problem, where the related cost functional includes stopping times dependent on controls. Based on the continuity of the cost functional, we can apply existence and uniqueness results provided in [4], which enables us to show that a unique optimal control exists.  相似文献   

7.
We discuss the stochastic linear-quadratic (LQ) optimal control problem with Poisson processes under the indefinite case. Based on the wellposedness of the LQ problem, the main idea is expressed by the definition of relax compensator that extends the stochastic Hamiltonian system and stochastic Riccati equation with Poisson processes (SREP) from the positive definite case to the indefinite case. We mainly study the existence and uniqueness of the solution for the stochastic Hamiltonian system and obtain the optimal control with open-loop form. Then, we further investigate the existence and uniqueness of the solution for SREP in some special case and obtain the optimal control in close-loop form.  相似文献   

8.
Backward stochastic Riccati equations are motivated by the solution of general linear quadratic optimal stochastic control problems with random coefficients, and the solution has been open in the general case. One distinguishing difficult feature is that the drift contains a quadratic term of the second unknown variable. In this paper, we obtain the global existence and uniqueness result for a general one-dimensional backward stochastic Riccati equation. This solves the one-dimensional case of Bismut–Peng's problem which was initially proposed by Bismut (Lecture Notes in Math. 649 (1978) 180). We use an approximation technique by constructing a sequence of monotone drifts and then passing to the limit. We make full use of the special structure of the underlying Riccati equation. The singular case is also discussed. Finally, the above results are applied to solve the mean–variance hedging problem with general random market conditions.  相似文献   

9.
In this paper, we present a numerical scheme for a first-order hyperbolic equation of nonlinear type perturbed by a multiplicative noise. The problem is set in a bounded domain D of ${\mathbb{R}^{d}}$ and with homogeneous Dirichlet boundary condition. Using a time-splitting method, we are able to show the existence of an approximate solution. The result of convergence of such a sequence is based on the work of Bauzet–Vallet–Wittbold (J Funct Anal, 2013), where the authors used the concept of measure-valued solution and Kruzhkov’s entropy formulation to show the existence and uniqueness of the stochastic weak entropy solution. Then, we propose numerical experiments by applying this scheme to the stochastic Burgers’ equation in the one-dimensional case.  相似文献   

10.
We study the Navier–Stokes system describing the motion of a compressible viscous fluid driven by a nonlinear multiplicative stochastic force. We establish local in time existence (up to a positive stopping time) of a unique solution, which is strong in both PDE and probabilistic sense. Our approach relies on rewriting the problem as a symmetric hyperbolic system augmented by partial diffusion, which is solved via a suitable approximation procedure. We use the stochastic compactness method and the Yamada–Watanabe type argument based on the Gyöngy–Krylov characterization of convergence in probability. This leads to the existence of a strong (in the PDE sense) pathwise solution. Finally, we use various stopping time arguments to establish the local existence of a unique strong solution to the original problem.  相似文献   

11.
We propose a new quadratic control problem for linear periodic systems which can be finite or infinite dimensional. We consider both deterministic and stochastic cases. It is a generalization of average cost criterion, which is usually considered for time-invariant systems. We give sufficient conditions for the existence of periodic solutions.Under stabilizability and detectability conditions we show that the optimal control is given by a periodic feedback which involves the periodic solution of a Riccati equation. The optimal closed-loop system has a unique periodic solution which is globally exponentially asymptotically stable. In the stochastic case we also consider the quadratic problem under partial observation. Under two sets of stabilizability and detectability conditions we obtain the separation principle. The filter equation is not periodic, but we show that it can be effectively replaced by a periodic filter. The theory is illustrated by simple examples.This work was done while this author was a visiting professor at the Scuola Normale Superiore, Pisa.  相似文献   

12.
We study the two-dimensional pressure-gradient system, a subsystem of the two-dimensional compressible Euler system. We consider the problem of interaction of four rarefaction waves which is one case of two-dimensional Riemann problems. It is known that, when two planar waves interact, there exists a smooth solution in the interaction region. In this paper, we establish the existence of a smooth solution in the hyperbolic domain of determinacy, in which we encounter the interaction of simple and planar waves and shock prevention in simple waves.  相似文献   

13.
We study convolution solutions of an abstract stochastic Cauchy problem with the generator of a convolution operator semigroup. In the case of additive noise, we prove the existence and uniqueness of a weak convolution solution; this solution is described by a formula generalizing the classical Cauchy formula in which the solution operators of the homogeneous problem are replaced by the convolution solution operators of the homogeneous problem. For the problem with multiplicative noise, we find a condition under which the weak convolution solution coincides with the soft solution and indicate a sufficient condition for the existence and uniqueness of a weak convolution solution; the latter can be obtained by the successive approximation method.  相似文献   

14.
Our aims of this paper are twofold: On one hand, we study the asymptotic stability in probability of stochastic differential system, when both the drift and diffusion terms are affine in the control. We derive sufficient conditions for the existence of control Lyapunov functions (CLFs) leading to the existence of stabilizing feedback laws which are smooth, except possibly at the equilibrium state. On the other hand, we consider the previous systems with an unknown constant parameters in the drift and introduce the concept of an adaptive CLF for stochastic system and use the stochastic version of Florchinger's control law to design an adaptive controller. In this framework, the problem of adaptive stabilization of nonlinear stochastic system is reduced to the problem of non-adaptive stabilization of a modified system.  相似文献   

15.
In this paper, we present a bipolar hydrodynamic model from semiconductor devices and plasmas, which takes the form of bipolar isentropic Euler–Poisson with electric field and frictional damping added to the momentum equations. We firstly prove the existence of the stationary solutions. Next, we present the global existence and the asymptotic behavior of smooth solutions to the initial boundary value problem for a one-dimensional case in a bounded domain. The result is shown by an elementary energy method. Compared with the corresponding initial data case, we find that the asymptotic state is the stationary solution.  相似文献   

16.
This paper considers a class of stochastic second-order-cone complementarity problems (SSOCCP), which are generalizations of the noticeable stochastic complementarity problems and can be regarded as the Karush–Kuhn–Tucker conditions of some stochastic second-order-cone programming problems. Due to the existence of random variables, the SSOCCP may not have a common solution for almost every realization . In this paper, motivated by the works on stochastic complementarity problems, we present a deterministic formulation called the expected residual minimization formulation for SSOCCP. We present an approximation method based on the Monte Carlo approximation techniques and investigate some properties related to existence of solutions of the ERM formulation. Furthermore, we experiment some practical applications, which include a stochastic natural gas transmission problem and a stochastic optimal power flow problem in radial network.  相似文献   

17.
In the present paper we analyse the American option valuation problem in a stochastic volatility model when transaction costs are taken into account. We shall show that it can be formulated as a singular stochastic optimal control problem, proving the existence and uniqueness of the viscosity solution for the associated Hamilton–Jacobi–Bellman partial differential equation. Moreover, after performing a dimensionality reduction through a suitable choice of the utility function, we shall provide a numerical example illustrating how American options prices can be computed in the present modelling framework.  相似文献   

18.
In this paper, a large class of time-varying Riccati equations arising in stochastic dynamic games is considered. The problem of the existence and uniqueness of some globally defined solution, namely the bounded and stabilizing solution, is investigated. As an application of the obtained existence results, we address in a second step the problem of infinite-horizon zero-sum two players linear quadratic (LQ) dynamic game for a stochastic discrete-time dynamical system subject to both random switching of its coefficients and multiplicative noise. We show that in the solution of such an optimal control problem, a crucial role is played by the unique bounded and stabilizing solution of the considered class of generalized Riccati equations.  相似文献   

19.
This paper investigates the investment and reinsurance problem in the presence of stochastic volatility for an ambiguity-averse insurer (AAI) with a general concave utility function. The AAI concerns about model uncertainty and seeks for an optimal robust decision. We consider a Brownian motion with drift for the surplus of the AAI who invests in a risky asset following a multiscale stochastic volatility (SV) model. We formulate the robust optimal investment and reinsurance problem for a general class of utility functions under a general SV model. Applying perturbation techniques to the Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation associated with our problem, we derive an investment–reinsurance strategy that well approximates the optimal strategy of the robust optimization problem under a multiscale SV model. We also provide a practical strategy that requires no tracking of volatility factors. Numerical study is conducted to demonstrate the practical use of theoretical results and to draw economic interpretations from the robust decision rules.  相似文献   

20.
We study the deterministic counterpart of a backward-forward stochastic differential utility, which has recently been characterized as the solution to the Cauchy problem related to a PDE of degenerate parabolic type with a conservative first order term. We first establish a local existence result for strong solutions and a continuation principle, and we produce a counterexample showing that, in general, strong solutions fail to be globally smooth. Afterward, we deal with discontinuous entropy solutions, and obtain the global well posedness of the Cauchy problem in this class. Eventually, we select a sufficient condition of geometric type which guarantees the continuity of entropy solutions for special initial data. As a byproduct, we establish the existence of an utility process which is a solution to a backward-forward stochastic differential equation, for a given class of final utilities, which is relevant for financial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号