首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L estimates are derived for the oscillatory integral ∫+0ei(xλ + (1/m) tλm)a(λ) dλ, where 2 ≤ m and (x, t) × +. The amplitude a(λ) can be oscillatory, e.g., a(λ) = eit (λ) with (λ) a polynomial of degree ≤ m − 1, or it can be of polynomial type, e.g., a(λ) = (1 + λ)k with 0 ≤ k ≤ (m − 2). The estimates are applied to the study of solutions of certain linear pseudodifferential equations, of the generalized Schrödinger or Airy type, and of associated semilinear equations.  相似文献   

2.
Let {vij; i, J = 1, 2, …} be a family of i.i.d. random variables with E(v114) = ∞. For positive integers p, n with p = p(n) and p/ny > 0 as n → ∞, let Mn = (1/n) Vn VnT , where Vn = (vij)1 ≤ ip, 1 ≤ jn, and let λmax(n) denote the largest eigenvalue of Mn. It is shown that a.s. This result verifies the boundedness of E(v114) to be the weakest condition known to assure the almost sure convergence of λmax(n) for a class of sample covariance matrices.  相似文献   

3.
Le nombre maximal de lignes de matrices seront désignées par:
1. (a) R(k, λ) si chaque ligne est une permutation de nombres 1, 2,…, k et si chaque deux lignes différentes coïncide selon λ positions;
2. (b) S0(k, λ) si le nombre de colonnes est k et si chaque deux lignes différentes coïncide selon λ positions et si, en plus, il existe une colonne avec les éléments y1, y2, y3, ou y1 = y2y3;
3. (c) T0(k, λ) si c'est une (0, 1)-matrice et si chaque ligne contient k unités et si chaque deux lignes différentes contient les unités selon λ positions et si, en plus, il existe une colonne avec les éléments 1, 1, 0.
La fonction T0(k, λ) était introduite par Chvátal et dans les articles de Deza, Mullin, van Lint, Vanstone, on montrait que T0(k, λ) max(λ + 2, (k − λ)2 + k − λ + 1). La fonction S0(k, λ) est introduite ici et dans le Théorème 1 elle est étudiée analogiquement; dans les remarques 4, 5, 6, 7 on donne les généralisations de problèmes concernant T0(k, λ), S0(k, λ), dans la remarque 9 on généralise le problème concernant R(k, λ). La fonction R(k, λ) était introduite et étudiée par Bolton. Ci-après, on montre que R(k, λ) S0(k, λ) T0(k, λ) d'où découle en particulier: R(k, λ) λ + 2 pour λ k + 1 − (k + 2)1/2; R(k, λ) = 0(k2) pour k − λ = 0(k); R(k, λ) (k − 1)2 − (k + 2) pour k 1191.  相似文献   

4.
Let Vi be short range potential and λi(ε) analytic functions. We show that the Hamiltonians Hε = −Δ + ε−2i = lnλi(ε)Vi((· − xi)/ε converge in the strong resolvent sense to the point interactions as ε → 0, and if Vi have compact support then the eigenvalues and resonances of Hε, which remains bounded as ε → 0, are analytic in ε in a complex neighborhood of zero. We compute in closed form the eigenvalues and resonances of Hε to the first order in ε.  相似文献   

5.
Let A = (aij) be an n × n Toeplitz matrix with bandwidth k + 1, K = r + s, that is, aij = aji, i, J = 1,… ,n, ai = 0 if i > s and if i < -r. We compute p(λ)= det(A - λI), as well as p(λ)/p′(λ), where p′(λ) is the first derivative of p(λ), by using O(k log k log n) arithmetic operations. Moreover, if ai are m × m matrices, so that A is a banded Toeplitz block matrix, then we compute p(λ), as well as p(λ)/p′(λ), by using O(m3k(log2 k + log n) + m2k log k log n) arithmetic operations. The algorithms can be extended to the computation of det(A − λB) and of its first derivative, where both A and B are banded Toeplitz matrices. The algorithms may be used as a basis for iterative solution of the eigenvalue problem for the matrix A and of the generalized eigenvalue problem for A and B.  相似文献   

6.
Let (Vn, g) be a C compact Riemannian manifold. For a suitable function on Vn, let us consider the change of metric: g′ = g + Hess(), and the function, as a ratio of two determinants, M() = ¦g′¦ ¦g¦−1. Using the method of continuity, we first solve in C the problem: Log M() = λ + ƒ, λ > 0, ƒ ε C. Then, under weak hypothesis on F, we solve the general equation: Log M() = F(P, ), F in C(Vn × ¦α, β¦), using a method of iteration. Our study gives rise to an interesting a priori estimate on ¦¦, which does not occur in the complex case. This estimate should enable us to solve the equation above when λ 0, providing we can overcome difficulties related to the invertibility of the linearised operator. This open question will be treated in our next article.  相似文献   

7.
We consider the Tikhonov regularizer fλ of a smooth function f ε H2m[0, 1], defined as the solution (see [1]) to We prove that if f(j)(0) = f(j)(1) = 0, J = m, …, k < 2m − 1, then ¦ffλ¦j2 Rλ(2k − 2j + 3)/2m, J = 0, …, m. A detailed analysis is given of the effect of the boundary on convergence rates.  相似文献   

8.
Let wλ(x)(1−x2)λ−1/2 and Pn(λ) be the ultraspherical polynomials with respect to wλ(x). Then we denote En+1(λ) the Stieltjes polynomials with respect to wλ(x) satisfyingIn this paper, we give estimates for the first and second derivatives of the Stieltjes polynomials En+1(λ) and the product En+1(λ)Pn(λ) by obtaining the asymptotic differential relations. Moreover, using these differential relations we estimate the second derivatives of En+1(λ)(x) and En+1(λ)(x)Pn(λ)(x) at the zeros of En+1(λ)(x) and the product En+1(λ)(x)Pn(λ)(x), respectively.  相似文献   

9.
Denote by xn,k(α,β) and xn,k(λ)=xn,k(λ−1/2,λ−1/2) the zeros, in decreasing order, of the Jacobi polynomial P(α,β)n(x) and of the ultraspherical (Gegenbauer) polynomial Cλn(x), respectively. The monotonicity of xn,k(α,β) as functions of α and β, α,β>−1, is investigated. Necessary conditions such that the zeros of P(a,b)n(x) are smaller (greater) than the zeros of P(α,β)n(x) are provided. A. Markov proved that xn,k(a,b)<xn,k(α,β) (xn,k(a,b)>xn,k(α,β)) for every n and each k, 1kn if a>α and b<β (a<α and b>β). We prove the converse statement of Markov's theorem. The question of how large the function fn(λ) could be such that the products fn(λ)xn,k(λ), k=1,…,[n/2] are increasing functions of λ, for λ>−1/2, is also discussed. Elbert and Siafarikas proved that fn(λ)=(λ+(2n2+1)/(4n+2))1/2 obeys this property. We establish the sharpness of their result.  相似文献   

10.
In a sequence ofn independent random variables the pdf changes fromf(x, 0) tof(x, 0 + δvn−1) after the first variables. The problem is to estimateλ (0, 1 ), where 0 and δ are unknownd-dim parameters andvn → ∞ slower thann1/2. Letn denote the maximum likelihood estimator (mle) ofλ. Analyzing the local behavior of the likelihood function near the true parameter values it is shown under regularity conditions that ifnn2(− λ) is bounded in probability asn → ∞, then it converges in law to the timeT(δjδ)1/2 at which a two-sided Brownian motion (B.M.) with drift1/2(δ′Jδ)1/2ton(−∞, ∞) attains its a.s. unique minimum, whereJ denotes the Fisher-information matrix. This generalizes the result for small change in mean of univariate normal random variables obtained by Bhattacharya and Brockwell (1976,Z. Warsch. Verw. Gebiete37, 51–75) who also derived the distribution ofTμ forμ > 0. For the general case an alternative estimator is constructed by a three-step procedure which is shown to have the above asymptotic distribution. In the important case of multiparameter exponential families, the construction of this estimator is considerably simplified.  相似文献   

11.
The basic result of the paper states: Let F1, …, Fn, F1,…, Fn have proportional hazard functions with λ1 ,…, λn , λ1 ,…, λn as the constants of proportionality. Let X(1) ≤ … ≤ X(n) (X(1) ≤ … ≤ X(n)) be the order statistics in a sample of size n from the heterogeneous populations {F1 ,…, Fn}({F1 ,…, Fn}). Then (λ1 ,…, λn) majorizes (λ1 ,…, λn) implies that (X(1) ,…, X(n)) is stochastically larger than (X(1) ,…, X(n)). Earlier results stochastically comparing individual order statistics are shown to be special cases. Applications of the main result are made in the study of the robustness of standard estimates of the failure rate of the exponential distribution, when observations actually come from a set of heterogeneous exponential distributions. Further applications are made to the comparisons of linear combinations of Weibull random variables and of binomial random variables.  相似文献   

12.
Let f ε Cn+1[−1, 1] and let H[f](x) be the nth degree weighted least squares polynomial approximation to f with respect to the orthonormal polynomials qk associated with a distribution dα on [−1, 1]. It is shown that if qn+1/qn max(qn+1(1)/qn(1), −qn+1(−1)/qn(−1)), then fH[f] fn + 1 · qn+1/qn + 1(n + 1), where · denotes the supremum norm. Furthermore, it is shown that in the case of Jacobi polynomials with distribution (1 − t)α (1 + t)β dt, α, β > −1, the condition on qn+1/qn is satisfied when either max(α,β) −1/2 or −1 < α = β < −1/2.  相似文献   

13.
A residue class a + n with weight λ is denoted by λ, a, n. For a finite system = {λs, as, ns}ks = 1 of such triples, the periodic map w (x) = ∑ns|xas λs is called the covering map of . Some interesting identities for those with a fixed covering map have been known; in this paper we mainly determine all those functions f : Ω → such that ∑ks = 1 λsf(as + ns ) depends only on w where Ω denotes the family of all residue classes. We also study algebraic structures related to such maps f, and periods of arithmetical functions ψ(x) = ∑ks = 1 λseiasx/ns and ω(x) = |{1 ≤ sk : (x + as, ns) = 1}|.  相似文献   

14.
We investigate the rate of convergence of series of the form
where λ = (λn), 0 = λ0 < λn ↑ + ∞, n → + ∞, β = {βn: n ≥ 0} ⊂ ℝ+, and τ(x) is a nonnegative function nondecreasing on [0; +∞), and
where the sequence λ = (λn) is the same as above and f (x) is a function decreasing on [0; +∞) and such that f (0) = 1 and the function ln f(x) is convex on [0; +∞).__________Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, No. 12, pp. 1665 – 1674, December, 2004.  相似文献   

15.
This is a systematic and unified treatment of a variety of seemingly different strong limit problems. The main emphasis is laid on the study of the a.s. behavior of the rectangular means ζmn = 1/(λ1(m) λ2(n)) Σi=1m Σk=1n Xik as either max{m, n} → ∞ or min{m, n} → ∞. Here {Xik: i, k ≥ 1} is an orthogonal or merely quasi-orthogonal random field, whereas {λ1(m): m ≥ 1} and {λ2(n): n ≥ 1} are nondecreasing sequences of positive numbers subject to certain growth conditions. The method applied provides the rate of convergence, as well. The sufficient conditions obtained are shown to be the best possible in general. Results on double subsequences and 1-parameter limit theorems are also included.  相似文献   

16.
Treated in this paper is the problem of estimating with squared error loss the generalized variance | Σ | from a Wishart random matrix S: p × p Wp(n, Σ) and an independent normal random matrix X: p × k N(ξ, Σ Ik) with ξ(p × k) unknown. Denote the columns of X by X(1) ,…, X(k) and set ψ(0)(S, X) = {(np + 2)!/(n + 2)!} | S |, ψ(i)(X, X) = min[ψ(i−1)(S, X), {(np + i + 2)!/(n + i + 2)!} | S + X(1) X(1) + + X(i) X(i) |] and Ψ(i)(S, X) = min[ψ(0)(S, X), {(np + i + 2)!/(n + i + 2)!}| S + X(1) X(1) + + X(i) X(i) |], i = 1,…,k. Our result is that the minimax, best affine equivariant estimator ψ(0)(S, X) is dominated by each of Ψ(i)(S, X), i = 1,…,k and for every i, ψ(i)(S, X) is better than ψ(i−1)(S, X). In particular, ψ(k)(S, X) = min[{(np + 2)!/(n + 2)!} | S |, {(np + 2)!/(n + 2)!} | S + X(1)X(1)|,…,| {(np + k + 2)!/(n + k + 2)!} | S + X(1)X(1) + + X(k)X(k)|] dominates all other ψ's. It is obtained by considering a multivariate extension of Stein's result (Ann. Inst. Statist. Math. 16, 155–160 (1964)) on the estimation of the normal variance.  相似文献   

17.
We study the asymptotic behavior of the maximal multiplicity μn = μn(λ) of the parts in a partition λ of the positive integer n, assuming that λ is chosen uniformly at random from the set of all such partitions. We prove that πμn/(6n)1/2 converges weakly to max jXj/j as n→∞, where X1, X2, … are independent and exponentially distributed random variables with common mean equal to 1.2000 Mathematics Subject Classification: Primary—05A17; Secondary—11P82, 60C05, 60F05  相似文献   

18.
We consider a variation of a classical Turán-type extremal problem as follows: Determine the smallest even integer σ(Kr,r,n) such that every n-term graphic sequence π = (d1,d2,...,dn) with term sum σ(π) = d1 + d2 + ... + dn ≥ σ(Kr,r,n) is potentially Kr,r-graphic, where Kr,r is an r × r complete bipartite graph, i.e. π has a realization G containing Kr,r as its subgraph. In this paper, the values σ(Kr,r,n) for even r and n ≥ 4r2 - r - 6 and for odd r and n ≥ 4r2 + 3r - 8 are determined.  相似文献   

19.
Let ϕ(n) and λ(n) denote the Euler and Carmichael functions, respectively. In this paper, we investigate the equation ϕ(n)r = λ(n)s, where rs ≥ 1 are fixed positive integers. We also study those positive integers n, not equal to a prime or twice a prime, such that ϕ(n) = p − 1 holds with some prime p, as well as those positive integers n such that the equation ϕ(n) = f(m) holds with some integer m, where f is a fixed polynomial with integer coefficients and degree degf > 1.  相似文献   

20.
The bounded edge-connectivity λk(G) of a connected graph G with respect to is the minimum number of edges in G whose deletion from G results in a subgraph with diameter larger than k and the edge-persistence D+(G) is defined as λd(G)(G), where d(G) is the diameter of G. This paper considers the Cartesian product G1×G2, shows λk1+k2(G1×G2)≥λk1(G1)+λk2(G2) for k1≥2 and k2≥2, and determines the exact values of D+(G) for G=Cn×Pm, Cn×Cm, Qn×Pm and Qn×Cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号