首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several solid phases with the general formula xM[XHgSO3yHgX2·zMX·nH2O were obtained from aqueous solutions during phase formation studies in the systems M2SO3/HgX2 (M = NH4, K; X = Cl, Br). All phases were structurally characterized on the basis of single crystal X‐ray diffraction data and adopt new structure types. Compounds with x, y, z = 1 and n = 0 are isostructural (structure type I ) and crystallise with two formula units in space group P21/m and lattice parameters of a ≈ 9.7, b ≈ 6.2, c ≈ 10.4Å, β ≈ 111°. Compounds with x, y = 1 and z, n = 0 (structure type II ) crystallize in space group Cmc21 with four formula units and lattice parameters of a ≈ 5.9, b ≈ 22.0, c ≈ 6.9Å. The structures with x = 2, y, z = 1 and n = 0 are likewise isostructural (stucture type III ) and consist of four formula units in space group Pnma with lattice parameters of a ≈ 22.2, b ≈ 6.1, c ≈ 12.4Å. K[HgSO3Cl]·KCl·H2O is the only representative where x = 1, y = 0, z = 1 and n = 1 (structure type IV ). It is triclinic (space group ) with four formula units and lattice parameters of a = 6.1571(8), b = 7.1342(9), c = 10.6491(14) Å, α = 76.889(2), β = 88.364(2), γ = 69.758(2)°. Characteristic for all structures types is the segregation of the M+ cations and the anions and/or HgX2 molecules into layers. The [XHgSO3] anions are present in all structures and have m symmetry, except for K[HgSO3Cl]·KCl·H2O with 1 symmetry (but very close to m symmetry). The different [XHgSO3] units exhibit very similar Hg‐S distances (average 2.372Å) and are more or less bent with ∠(X‐Hg‐S) angles ranging from 159.7 to 173.7°. The molecular HgX2 entities present in structure types I ‐ III deviate only slightly from linearity with ∠(X‐Hg‐X) angles ranging from 174 to 179°. The structures are stabilised by interaction of the K+ or NH4+ cations that are located between the anionic layers or in the vacancies of the framework, by K‐O contacts or, in case of ammonium compounds, by medium to weak hydrogen bonding interactions of the type N‐H···O.  相似文献   

2.
The crystal structure of [(C5H4BMe2)2Fe]‐4,4′‐bipyridine [ 2 · bipy]n has been determined by the method of simulated annealing from high resolution X‐ray powder diffraction at room temperature. The compound is of interest, because it proves that highly ordered organometallic macromolecules can be formed in the solid state via the self‐assembly of N–B‐donor‐acceptor bonds. [ 2 · bipy]n crystallizes in the triclinic space group, P 1, Z = 2, with unit cell parameters of a = 8.3366(2) Å, b = 11.4378(3) Å, c = 12.6740(5) Å, α = 112.065(2)°, β = 108.979(1)°, γ = 90.551(2)°, and V = 1047.06(6) Å3. For the structure solution of [ 2 · bipy]n 11 degrees of freedom (3 translational, 3 orientational, 5 torsion angles) were determined within several hours, demonstrating that the crystal packing and the molecular conformation of medium sized (< 50 non‐hydrogen atoms) coordination compounds can nowadays be solved routinely from high resolution powder diffraction data.  相似文献   

3.
Three new Copper(II) polymers coordinated by both rigid and flexible ligands, [Cu(bpy)(C5H6O4)]n ( 1 ), [Cu(bpy)(C6H8O4)]n ( 2 ), and [Cu2(bpy)2(C6H8O4)2]n ( 3 ) (bpy = 4,4′‐bipyridine), have been hydrothermally synthesized and structurally characterized. Complex 1 features a box‐like bilayer motif of (4, 4) net. It crystallizes in triclinic space group with cell parameters: a = 8.1395(6) Å, b = 9.43 12(8) Å, c = 10.5473(8) Å, α = 112.1830(1)°, β = 92.423(2)°, γ = 104.752(2)°, V = 716.31(1) Å3, Z = 2. Complex 2 crystallizes in triclinic space group with a = 8.8652(4) Å, b = 8.9429(4) Å, c = 10.6390(4) Å, α = 89.520(2)°, β = 69.123(2)°, γ = 75.2440(1)°, V = 758.92(6) Å3, Z = 2. Complex 3 crystallizes in monoclinic space group Cc with a = 11.1521(1) Å, b = 15.3961(1) Å, c = 17.7419(1) Å, β = 105.715(3)°, V = 2932.4(5) Å3, Z = 4. Complexes 2 and 3 are isomeric with different coordination modes of adipato ligand. Both of them possess the two‐fold interpenetrated 3‐D pcu topological net.  相似文献   

4.
Three ternary rare earth [NdIII ( 1 ), SmIII ( 2 ) and YIII ( 3 )] complexes based on 3‐[(4,6‐dimethyl‐2‐pyrimidinyl)thio]‐propanoic acid (HL) and 1,10‐phenanthroline (Phen) were synthesized and characterized by IR and UV/Vis spectroscopy, TGA, and single‐crystal X‐ray diffraction. The crystal structures showed that complexes 1 – 3 contain dinuclear rare earth units bridged by four propionate groups and are of general formula [REL3(Phen)]2 · nH2O (for 1 and 2 : n = 2; for 3 : n = 0). All rare earth ions are nine‐coordinate with distorted mono‐capped square antiprismatic coordination polyhedra. Complex 1 crystallizes in the monoclinic system, space group P21/c with a = 16.241(7) Å, b = 16.095(7) Å, c = 19.169(6) Å, β = 121.48(2)°. Complex 2 crystallizes in the monoclinic system, space group P21/c with a = 16.187(5) Å, b = 16.045(4) Å, c = 19.001(4) Å, β = 120.956(18)°. Complex 3 crystallizes in the triclinic system, space group P1 with a = 11.390(6) Å, b = 13.636(6) Å, c = 15.958(7) Å, α = 72.310(17)°, β = 77.548(15)°, γ = 78.288(16)°. The antioxidant activity test shows that all complexes own higher antioxidant activity than free ligands.  相似文献   

5.
Alkoxo Compounds of Iron(III): Syntheses and Characterization of [Fe2(OtBu)6], [Fe2Cl2(OtBu)4], [Fe2Cl4(OtBu)2] and [N(nBu)4]2[Fe6OCl6(OMe)12] The reaction of iron(III)chloride in diethylether with sodium tert‐butylat yielded the homoleptic dimeric tert‐‐butoxide Fe2(OtBu)6 ( 1 ). The chloro‐derivatives [Fe2Cl2(OtBu)4] ( 2 ), and [Fe2Cl4(OtBu)2] ( 3 ) could be synthesized by ligand exchange between 1 and iron(III)chloride. Each of the molecules 1 , 2 , and 3 consists of two edge‐sharing tetrahedrons, with two tert‐butoxo‐groups as μ2‐bridging ligands. For the synthesis of the alkoxides 1 , 2 , and 3 diethylether plays an important role. In the first step the dietherate of iron(III)chloride FeCl3(OEt2)2 ( 4 ) is formed. The reaction of iron(III)chloride with tetrabutylammonium methoxide in methanol results in the formation of a tetrabutylammonium methoxo‐chloro‐oxo‐hexairon cluster [N(nBu)4]2[Fe6OCl6(OMe)12] ( 5 ). Crystal structure data: 1 , triclinic, P1¯, a = 9.882(2) Å, b = 10.523(2) Å, c = 15.972(3) Å, α = 73.986(4)°, β = 88.713(4)°, γ = 87.145(4)°, V = 1594.4(5) Å3, Z = 2, dc = 1.146 gcm—1, R1 = 0.044; 2 , monoclinic, P21/n, a = 11.134(2) Å, b = 10.141(2) Å, c = 12.152(2) Å und β = 114.157(3)°, V = 1251.8(4) Å3, Z = 2, dc = 1.377 gcm—1, R1 = 0.0581; 3 , monoclinic, P21/n, a = 6.527(2) Å, b = 11.744(2) Å, c = 10.623(2), β = 96.644(3)°, V = 808.8(2) Å3, Z = 2, dc = 1.641 gcm—1, R1 = 0.0174; 4 , orthorhombic, Iba2, a = 23.266(5) Å, b = 9.541(2) Å, c = 12.867(3) Å, V = 2856(2) Å3, Z = 8, dc = 1.444 gcm—1, R1 = 0.0208; 5 , trigonal, P31, a = 13.945(2) Å, c = 30.011(6) Å, V = 5054(2) Å3, Z = 6, dc = 1.401 gcm—1; Rc = 0.0494.  相似文献   

6.
The synthesis, structure, and magnetic properties of four 2,2′‐dipyridylamine ligand (abbreviated as Hdpa) containing copper(II) complexes. There is one binuclear compound, which is [Cu21,1‐NCO)2(NCO)2(Hdpa)2] ( 1 ), and three mononuclear compounds, which are [Cu{N(CN)2}2(Hdpa)2] ( 2 ), [Cu(CH3CO2)(Hdpa)2·N(CN)2] ( 3 ), and [Cu(NCS)(Acac)] ( 4 ). Compounds 1 and 4 crystallize in the monoclinic system, space group P2(1)/c and Z = 4, with a = 8.2465(6) Å, b = 9.3059(7) Å, c = 16.0817(12) Å, β = 91.090(1)°, and V = 1233.90(16) Å3 for 1 and a = 7.6766(6) Å, b = 21.888(3) Å, c = 10.4678(12) Å, β = 90.301(2)°, and V= 1758.8(4) Å3 for 4 . Compounds 2 and 3 crystallize in the triclinic system, space group P‐1 and Z = 1, with a = 8.1140(3) Å, b = 8.2470(3) Å, c = 9.3120(4) Å, β = 102.2370(10)°, and V = 592.63(4) Å3 for 2 and a = 7.4780(2) Å, b = 12.5700(3) Å, c = 13.0450(3) Å, β = 96.351(2)°, and V = 1211.17(5) Å3 for 3 . Complex ( 1 ), the magnetic data was fitted by the Bleaney‐Bowers equation (1). A very good fit was derived with J = 23.96, Θ = ?1.5 (g = 1.97). Complex ( 1 ) shows the ferromagnetism. Complexes ( 2 ), ( 3 ) and ( 4 ) of have the it is the typical paramagnetic behavior of unpaired electrons. Under a low temperature around 25 K, complexes ( 2 ) and ( 3 ) show weak ferromagnetic behavior. They are the cause of hydrogen bonds.  相似文献   

7.
By employing diethyl 1,3‐propylidenebis(4‐oxybenzoate) as a precursor, the new three‐dimensional metal‐organic framework [La2L2(HL)2]n [L = 1,3‐propylidenebis(4‐oxybenzoate)] was prepared and characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, infrared spectroscopy, and thermogravimetric analysis. The compound crystallizes in the triclinic space group P , with cell parameters: a = 8.299 (2) Å, b = 14.127 (3) Å, c = 14.520 (3) Å, α = 112.43 (3) °, β = 103.10 (3) °, γ = 95.28 (3)°, V = 1502.2 (5) Å3, and Z = 1. Under hydrothermal reaction conditions, two ester groups of the ligand hydrolyzed into carboxylate groups. The carboxylate groups coordinated in situ to metal ions to form the 3D coordination polymer. It exhibits a 10.4 × 10.6 Å rhombic channel along the [011] direction. On the basis of the results of TG analysis, the structure is thermally stable up to ≈? 400 °C.  相似文献   

8.
Alcoholysis of [Fe2(OtBu)6] as a Simple Route to New Iron(III)‐Alkoxo Compounds: Synthesis and Crystal Structures of [Fe2(OtAmyl)6], [Fe5OCl(OiPr)12], [Fe5O(OiPr)13], [Fe5O(OiBu)13], [Fe5O(OCH2CF3)13], [Fe5O(OnPr)13], and [Fe9O3(OnPr)21] · nPrOH New alkoxo‐iron compounds can be synthesized easily by alcoholysis of [Fe2(OtBu)6] ( 1 ). Due to different bulkyness of the alcohols used, three different structure types are formed: [Fe2(OR)6], [Fe5O(OR)13] and [Fe9O3(OR)21] · ROH. We report synthesis and crystal structures of the compounds [Fe5OCl(OiPr)12] ( 2 ), [Fe2(OtAmyl)6] ( 3 ), [Fe5O(OiPr)13] ( 4 ), [Fe5O(OiBu)13] ( 5 ), [Fe5O(OCH2CF3)13] ( 6 ), [Fe9O3(OnPr)21] · nPrOH ( 7 ) and [Fe5O(OnPr)13] ( 8 ). Crystallographic Data: 2 , tetragonal, P 4/n, a = 16.070(5) Å, c = 9.831(5) Å, V = 2539(2) Å3, Z = 2, dc = 1.360 gcm?3, R1 = 0.0636; 3 , monoclinic, P 21/c, a = 10.591(5) Å, b = 10.654(4) Å, c = 16.740(7) Å, β = 104.87(2)°, V = 1826(2) Å3, Z = 2, dc = 1.154 gcm?3, R1 = 0.0756; 4 , triclinic, , a = 20.640(3) Å, b = 21.383(3) Å, c = 21.537(3) Å, α = 82.37(1)°, β = 73.15(1)°, γ = 61.75(1)°, V = 8013(2) Å3, Z = 6, dc = 1.322 gcm?3, R1 = 0.0412; 5 , tetragonal, P 4cc, a = 13.612(5) Å, c = 36.853(5) Å, V = 6828(4) Å3, Z = 4, dc = 1.079 gcm?3, R1 = 0.0609; 6 , triclinic, , a = 12.039(2) Å, b = 12.673(3) Å, c = 19.600(4) Å, α = 93.60(1)°, β = 97.02(1)°, γ = 117.83(1)°, V = 2600(2) Å3, Z = 2, dc = 2.022 gcm?3, R1 = 0.0585; 7 , triclinic, , a = 12.989(3) Å, b = 16.750(4) Å, c = 21.644(5) Å, α = 84.69(1)°, β = 86.20(1)°, γ = 77.68(1)°, V = 4576(2) Å3, Z = 2, dc = 1.344 gcm?3, R1 = 0.0778; 8 , triclinic, , a = 12.597(5) Å, b = 12.764(5) Å, c = 16.727(7) Å, α = 91.94(1)°, β = 95.61(1)°, γ = 93.24(2)°, V = 2670(2) Å3, Z = 2, dc = 1.323 gcm?3, R1 = 0.0594.  相似文献   

9.
The phase diagram of the system [Ph4P]Br/BiBr3 was investigated with the aid of DSC, TG and temperature dependent X‐ray powder diffraction measurements. By varying the reaction conditions, stoichiometry and crystallisation conditions of the reaction between BiBr3 and [Ph4P]Br four polynuclear bromobismuthates are formed. We report here the crystal structure of the solvation product [Ph4P]3[Bi2Br9] · CH3COCH3, which crystallises with monoclinic symmetry in the S. G. P21/n No. 14, a = 12.341(1), b = 32.005(3), c = 19.929(3) Å, β = 99.75(2)°, V = 7758(7) Å3, Z = 4 and the crystal structures of two modifications of the compound [Ph4P]4[Bi6Br22]. The α‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.507(4) Å, b = 14.434(4) Å, c = 17.709(5) Å, α = 81.34(2)°, β = 72.42(2)°, γ = 72.53(2)°, V = 3132.7(1) Å3, Z = 2. The high‐temperature β‐form, crystallises with triclinic symmetry in the S. G. P1 No. 2, a = 13.893(4) Å, b = 14.267(3) Å, c = 16.580(3), α = 100.13(2)°, β = 96.56(2)°, γ = 110.01(2)°, V = 2985.5(1) Å3, Z = 2. Lattice parameters of [Ph4P]4[Bi8Br28] are also given. The thermal behaviour of the compounds and in addition the vibrational spectra of [Ph4P]3[Bi2Br9] · CH3COCH3 are presented and discussed.  相似文献   

10.
The complexes [Cu(dpp)Br2] ( 1 ) and [Cu(dpp)2][CuBr2] ( 2 ) (dpp = 2,9‐diphenyl‐1,10‐phenanthroline) were synthesized and characterized by single‐crystal X‐ray diffraction methods. Reaction of copper(II) bromide with the dpp ligand in dichloromethane at room temperature afforded 1 , which is a rare example of non‐square planar four‐coordinate copper(II) complexes. Complex 1 crystallizes in the monoclinic space group C2/c with a = 15.352(3), b = 13.192(3), c = 11.358(2) Å, β = 120.61(3)°, V = 1979.6(7) Å3, Z = 4, Dcalc = 1.865 g cm?3. The coordination geometry about the copper center is distorted about halfway between square planar and tetrahedral. The Cu‐N distance is 2.032(2) Å and the Cu‐Br distance 2.3521(5) Å. Heating a CH2Cl2 or acetone solution of 1 resulted in complex 2 , which consists of a slightly distorted tetrahedral [Cu(dpp)2]+ cation and a linear two‐coordinate [CuBr2]? anion. 2 crystallizes in the triclinic space group with a = 10.445(2), b = 11.009(2), c = 18.458(4) Å, α = 104.72(3), β = 94.71(3), γ = 103.50(3)°, V = 1973.3(7) Å3, Z = 2, Dcalc = 1.602 g cm?3. The four Cu(1)‐N distances are between 2.042(3) and 2.067(3) Å, the distance of Cu(2)‐Br(1) 2.2268(8) Å, and the disordered Cu(3)‐Br(2) distances are 2.139(7) and 2.237(4) Å, respectively. Complex 2 could also be prepared by directly reacting CuBr with dpp in CH2Cl2.  相似文献   

11.
Rare Earth Halides Ln4X5Z. Part 1: C and/or C2 in Ln4X5Z The compounds Ln4X5Cn (Ln = La, Ce, Pr; X = Br, I and 1.0 < n < 2.0) are prepared by the reaction of LnX3, Ln metal and graphite in sealed Ta‐ampoules at temperatures 850 °C < T < 1050 °C. They crystallize in the monoclinic space group C2/m. La4I5C1.5: a = 19.849(4) Å, b = 4.1410(8) Å, c = 8.956(2) Å, β = 103.86(3)°, La4I5C2.0: a = 19.907(4) Å, b = 4.1482(8) Å, c = 8.963(2) Å, β = 104.36(3)°, Ce4Br5C1.0: a = 18.306(5) Å, b = 3.9735(6) Å, c = 8.378(2) Å, β=104.91(2)°, Ce4Br5C1.5: a = 18.996(2) Å, b = 3.9310(3) Å, c = 8.282(7) Å, β = 106.74(1)°, Pr4Br5C1.3: a = 18.467(2) Å, b = 3.911(1) Å, c = 8.258(7) Å, β = 105.25(1)° and Pr4Br5C1.5: a = 19.044(2) Å, b = 3.9368(1) Å, c = 8.254(7) Å, β = 106.48(1)°. In the crystal structure the lanthanide metals are connected to Ln6‐octahedra centered by carbon atoms or C2‐groups. The Ln6‐octahedra are condensed via opposite edges to chains and surrounded by X atoms which interconnect the chains. A part n of isolated C‐atoms is substituted by 1‐n C2‐groups. The C‐C distances range between 1.26 and 1.40Å. In the ionic formulation (Ln3+)4(X?)5(C4?)n(C2m?)1?n·e? with 0 < n < 1 and m = 2, 4, 6 (C22?, C24? C26?), there are 1 < e? < 5 electrons centered in metal‐metal bonds.  相似文献   

12.
[TbNa(4‐msal)4(phen)2]n ( 1 ) (4‐msal = 4‐methyl salicylic acid), a new hetero‐metallic lanthanide coordination polymer (CP) involving sodium was synthesized. It crystallizes in the monoclinic space group P21/n, with a = 20.4809(9) Å, b = 9.8183(2) Å, c = 26.1987(11) Å, α = 90.00°, β = 112.922(5)°, γ = 90.00°, V = 4852.2(3) Å3, and Z = 4. The complex was characterized by single crystal and powder X‐ray diffraction, elemental analysis (EA), and Fourier transform infrared (FT‐IR) and luminescence spectroscopy. The luminescence properties of a powder sample of 1 were studied at room temperature and the luminescence lifetime and total quantum yield (QY) were determined.  相似文献   

13.
Wentong Chen 《中国化学》2012,30(2):273-276
A novel zinc porphyrin, {[ZnTCPP(EtOH)][Zn(en)]2}n(EtOH)2n ( 1 ) (TCPP=meso‐tetra(4‐carboxyphenyl)‐porphyrin; EtOH=ethanol; en=ethylenediamine) was obtained via a hydrothermal reaction and characterized by single‐crystal X‐ray diffraction. Complex 1 crystallizes in the space group C2/c of the monoclinic system with eight formula units in a cell: a=32.465(4) Å, b=10.527(3) Å, c=31.845(3) Å, β=95.524(6) °, V=10832(4) Å3, C58H57N8O11Zn3, Mr=1238.23, Dc=1.518 g/cm3, S=1.005, µ(Mo Kα) =1.388 mm?1, F(000) =5112, R=0.0650 and wR=0.1574. Complex 1 features a novel 2‐D layered motif. The spectral data of UV‐vis, FT‐IR and fluorescence are reported.  相似文献   

14.
Three 3, 5‐dimethylpyrazole (pz*) copper(II) complexes, [Cu(pz*)4(H2O)](ClO4)2 ( 1 ), [Cu(pz*)2(NCS)2]·H2O ( 2 ), and [Cu(pz*)2(OOCCH=CHCOO)(H2O)]·1.5H2O ( 3 ), have been synthesized and characterized with single crystal X‐ray structure analysis. 1 crystallizes in the tetragonal space group, 14/m, with a = 14.027 (3) Å, c = 16.301 (5) Å, and Z = 4. 2 crystallizes in the monoclinic space group, P21/c, with a = 8.008 (3) Å, b = 27.139 (9) Å, c = 8.934 (3) Å, β = 106.345 (6)°, and Z = 4. 3 crystallizes in the triclinic space group, P1¯, with a = 7.291 (9) Å, b = 10.891 (13) Å, c = 11.822 (14) Å, α = 80.90 (2)°, β = 79.73(2)°, γ = 70.60(2)°, and Z = 2. In 1 , one water molecule and four pz* ligands are coordinated to CuII. Two [Cu(pz*)4(H2O)]2+ units are connected to ClO4 via hydrogen bonds. One lattice water molecule is found in the unit cell of 2 , which forms an one‐dimensional chain via intermolecular hydrogen bonds with the N‐H atom of pz*. In 3 , the oxygen atom of the coordinated water molecule is connected with two C=O groups of two neighbouring maleic acid molecules to form a linear parallelogram structure. Another C=O group of maleic acid forms a hydrogen bond with the N‐H atom of pz* to create a two‐dimensional structure. The spectroscopic and bond properties are also discussed.  相似文献   

15.
Starting with a zirconium salt and LH2 , (pydaH2)2+(pydc)2?, (pyda=2, 6‐pyridinediamine; pydcH2=2,6‐pyridinedicarboxylic acid), as a 1:1 proton transfer self‐associated compound, two different compounds were resulted. One of them is a new complex of ZrIV with a flat pyridine containing ligand and structure of (pydaH)2[Zr(pydc)3] · 5H2O (1) and the other, (pydaH)+(NO3)? (2) is an ion pair with no zirconium ion. The zirconium(IV) complex (1) is crystallized in triclinic system with space group and Z = 2, the crystallographic parameters are: a = 10.612(5) Å, b = 10.617(5) Å, c = 16.815(8) Å, α = 103.654(9)°, β = 95.821(9)°, γ = 98.891(9)° and R‐value for 16767 collected reflections is 0.0592. The ion pair (2) has crystals of monoclinic system with P21 space group and Z = 2. Its crystallographic parameters are: a = 3.6227(11) Å, b = 10.034(4) Å, c = 10.296(4) Å, β = 93.422(9)° and R‐value for 4031 collected reflections is 0.0521. The two compounds were characterized with elemental analysis, ESI/MS, NMR and IR spectroscopy.  相似文献   

16.
The reaction of MoBr3 and pyridine at room temperature provided single crystals of mer‐[MoX3Py3]. mer‐[MoBr3Py3] crystallizes in P21/n monoclinic space group with cell dimensions a = 9.2297(5) Å, b = 12.911(8) Å, c = 15.7022(9) Å and β = 90.479(3)°. There are four formula units in a unit cell. Mo–N distances are in the range 2.196(8)–2.214(8) Å and Mo–Br distances are 2.573(1) Å and 2.574(1) Å. Fundamental vibrational frequencies of pyridine molecules are strongly affected upon coordination in all three coordination compounds: mer‐[MoBr3Py3], mer‐[MoI3Py3] and trans,trans‐[MoBr2Py4][MoBr4Py2].  相似文献   

17.
Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)] · 7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)] · 4H2O (NDUS1), and one uranyl selenate‐selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L ‐cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4) Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two‐dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two‐dimensional uranyl selenate‐selenite sheets with a U/Se ratio of 1/2. In‐situ reaction of the L ‐cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L ‐cystine, balancing the charge of the sheets.  相似文献   

18.
Hydrated alkaline earth metal salts of 5‐amino‐1H‐tetrazole ( B ) were synthesized by reaction of B with a suitable metal hydroxide in water. All compounds were fully characterized by analytical (elemental analysis and mass spectrometry) and spectroscopic (IR, Raman, 1H and 13C NMR) methods. Additionally, the crystal structures of the magnesium [ 1· 4H2O: triclinic, P$\bar {1}$ , a = 5.940(1) Å, b = 7.326(1) Å,c = 7.383(1) Å, α = 106.10(1)°, β = 106.51(1)°, γ = 111.85(1)°, V = 258.0(1) Å3], calcium [ 2· 6H2O: monoclinic, P21/m, a = 6.904(1) Å,b = 6.828(1) Å, c = 10.952(2) Å, β = 94.50(2)°, V = 514.6(1) Å3], and strontium [ 3· 6H2O: orthorhombic, Cmcm, a = 6.987(1) Å, b = 28.394(2) Å, c = 7.007(1) Å, V = 1390.3(2) Å3] were determined by low temperature X‐ray diffraction. Additionally, the (gas phase) structure of the 5‐amino‐1H‐tetrazole anion ([ B ]) was also studied by natural bond orbital (NBO) analysis [B3LYP/6‐31+G(d,p)]. Lastly, standard tests were used to determine the sensitivity towards impact, friction, and electrostatic discharge of the compounds and the thermal stability was assessed by differential scanning calorimetry (DSC) analysis.  相似文献   

19.
A novel high energetic material, 1‐amino‐1‐methylamino‐2,2‐dinitroethylene (AMFOX‐7), was synthesized through 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) reacting with methylamine in N‐methyl pyrrolidone (NMP) at 80.0°C, and its structure was determined by single crystal X‐ray diffraction. The crystal is monoclinic, space group P21/m with crystal parameters of a=6.361(3) Å, b=7.462(4) Å, c=6.788(3) Å, β=107.367(9)°, V=307.5(3) Å3, Z=2, µ=0.160 mm?1, F(000)=168, Dc=1.751 g·cm?3, R1=0.0463 and wR2=0.1102. Thermal decomposition of AMFOX‐7 was studied, and the enthalpy, apparent activation energy and pre‐exponential constant of the exothermic decomposition reaction are 303.0 kJ·mol?1, 230.7 kJ·mol?1 and 1021.03 s?1, respectively. The critical temperature of thermal explosion is 245.3°C. AMFOX‐7 has higher thermal stability than FOX‐7.  相似文献   

20.
The adduct 1,6‐di­amino­hexane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2) is a salt {hexane‐1,6‐diyldiammonium–4‐[1,1‐bis(4‐hydroxyphenyl)ethyl]phenolate (1/2)}, C6H18N22+·2C20H17O3?, in which the cation lies across a centre of inversion in space group P. The anions are linked by two short O—H?O hydrogen bonds [H?O 1.74 and 1.76 Å, O?O 2.5702 (12) and 2.5855 (12) Å, and O—H?O 168 and 169°] into a chain containing two types of R(24) ring. Each cation is linked to four different anion chains by three N—H?O hydrogen bonds [H?O 1.76–2.06 Å, N?O 2.6749 (14)–2.9159 (14) Å and N—H?O 156–172°]. In the adduct 2,2′‐bipyridyl–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C10H8N2·2C20H18O3, the neutral di­amine lies across a centre of inversion in space group P21/n. The tris­(phenol) mol­ecules are linked by two O—H?O hydrogen bonds [H?O both 1.90 Å, O?O 2.7303 (14) and 2.7415 (15) Å, and O—H?O 173 and 176°] into sheets built from R(38) rings. Pairs of tris­(phenol) sheets are linked via the di­amine by means of a single O—H?N hydrogen bond [H?N 1.97 Å, O?N 2.7833 (16) Å and O—H?N 163°].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号