首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Bipy, Phen, and P(C6H4CH2NMe2‐2)3 in the Synthesis of Cationic Silver(I) Complexes; the Solid‐State Structures of [P(C6H4CH2NMe2‐2)3]AgOTf and [Ag(phen)2]OTf The reaction of [P(C6H4CH2NMe2‐2)3]AgX ( 1a , X = OTf; 1b , X = OClO3) with equimolar amounts of LcapL ( 2a , LcapL = 2, 2′‐bipyridine, bipy; 2b , LcapL = 4, 4′‐dimethyl‐2, 2′‐bipyridine, bipy′; 2c , LcapL = 1, 10‐phenanthroline, phen) leads to the formation of the cationic complexes {[P(C6H4CH2NMe2‐2)3]Ag(LcapL)}+X (LcapL = bipy: 3a , X = OTf; 3b , X = ClO4; LcapL = bipy′: 3c , X = OTf; 3d , X = ClO4; LcapL = phen: 3e , X = OTf; 3f , X = ClO4) in which the building blocks LcapL and P(C6H4CH2NMe2‐2)3 act as bidentate chelating ligands and are datively‐bound to the silver atom. Spectroscopic studies reveal that on the NMR time‐scale the phosphane group is dynamic with exchanging the respective Me2NCH2 built‐in arms. While complex 3e is stable in the solid‐state, it appeared that solutions of 3e start to decompose upon precipitation of colloidal silver when they are heated or irradiated with light, respectively. Appropriate work‐up of the reaction mixture allows the isolation of the phosphane P(C6H4CH2NMe2‐2)3 ( 5 ) along with [Ag(phen)2]OTf ( 4 ). The solid‐state structures of neutral 1a and cationic 4 are reported. Mononuclear 1a crystallizes in the monoclinic space group P21/c with the cell parameters a = 16.7763(2), b = 14.7892(2), c = 25.44130(10)Å, β = 106.1260(10), V = 6063.83(11)Å3 and Z = 4 with 8132 observed unique reflections (R1 = 0.0712), while 4 crystallizes in the monoclinic space group C2/c with the cell parameters a = 26.749(3), b = 7.1550(10), c = 26.077(3)Å, β = 113.503(2), V = 4576.8(10)Å3 and Z = 4 with 6209 observed unique reflections (R1 = 0.0481). The unit cell of 1a consists of two independent molecules. In both molecules the silver atom possesses a distorted tetrahedral coordination sphere and a boat‐like conformation for the six‐membered AgPNCH2C2/phenyl cycles is found. In 4 , as typical for 1a , the silver atom possesses the coordination number 4. The two phen ligands are tilted by 40.63°. The OTf group is acting as non‐coordinating counter ion.  相似文献   

2.
Synthesis of Monomeric T‐Shaped Silver(I) Halide Complexes – Crystal Structure Analysis of [P(C6H4CH2NMe2‐2)3]AgBr Treatment of the tetrapodal phosphane P(C6H4CH2NMe2‐2)3 ( 1 ) with equimolar amounts of the silver(I) halides AgX ( 2 a : X = Cl, 2 b : X = Br) produces in tetrahydrofuran at 25 °C the monomeric silver(I) complexes [P(C6H4CH2NMe2‐2)3]AgX with planar coordination at the Ag atoms ( 3 a : X = Cl, 3 b : X = Br) in excellent yields. From complex 3 b a single X‐ray crystal structure analysis was carried out. Mononuclear 3 b crystallizes in the monoclinic space group P21/c with the cell parameters a = 14.504(6), b = 11.034(3), c = 17.604(5) Å, β = 102.86(4)°; V = 2746.6(16) Å3; Z = 4; 2953 observed unique reflections, R1 = 0.0805. Complex 3 b consists of monomeric sub‐units with a planar T‐shaped arrangement formed by the atoms Ag1, N1, P1 as well as Br1, whereby the P1–Ag1–Br1 array is almost linear orientated.  相似文献   

3.
The title compounds 3‐5 are accessible by treatment of P(C6H4CH2NMe2)3( 1 ) with CuX ( 2a : X = Cl, 2b : X = Br, 2c : X = I) in the ratio of 1:1 or 1:2 in very good yields. Reaction of 1 with equimolar amounts of 2a affords the copper(I) chloride [P(C6H4CH2NMe2)3]CuCl ( 3 ). With a further equivalent of 2a homobimetallic [P(C6H4CH2NMe2)3]Cu2Cl2 ( 4 ) is formed, which also can be synthesized by the reaction of 1 with two equivalents of 2a. Complex 3 reacts with CuX (X = Br, I)to afford [P(C6H4CH2NMe2)3]Cu2ClX ( 5a : X = Br; 5b : X = I) in which mixed halides are present. The newly synthesized complexes 3‐5 were characterized by elemental analyses, by their IR‐, 1H‐, 13C{1H}‐ and 31P{1H}‐NMR spectra as well as by mass spectrometrical studies. The solid‐state structures of complexes 3 and 4 are reported. Mononuclear 3 crystallizes in the monoclinic space group P21/c with the cell parameters a = 14.285(2), b = 10.853(2), c = 17.425(2) Å , β = 103.310(10)?, V = 2628.9(7) Å 3 and Z = 4 with 4053 observed unique reflections; R1 = 0.0314. The crystal structure of 3 consists of monomeric molecules with planar coordinated copper(I) centres (CuClNP). Homobimetallic 4 crystallizes in the monoclinic space group P21/n with a = 23.905(4), b = 10.874(3), c = 25.314(5), β = 99.130(10)?, V = 6497(2) /Aring; 3 and Z = 4 with 9021 observed unique reflections; R1 = 0.0480. In 4 one of two copper(I) centres possesses a distorted trigonal‐pyramidal environment, while the other one is almost square‐pyramidal coordinated. The Cu2Cl2 segment resembles to a building block which is set up by a contact ion pair consisting of Cu+ and [CuCl2] , respectively.  相似文献   

4.
From the reaction of 1‐HOCPh2‐2‐NMe2C6H4 ( 1 ), 1‐HOC(C6H11)2‐2‐NMe2C6H4 ( 2 ) and 1‐HOCPh2CH2‐2‐NMe2C6H4 ( 3 ) with n‐BuLi in diethyl ether, the solvent‐free chelated dimethylamino lithium alkoxides [1‐LiOCPh2‐2‐NMe2C6H4]2 ( 4 ), [1‐LiOC(C6H11)2‐2‐NMe2C6H4]2 ( 5 ) and [1‐LiOCPh2CH2‐2‐NMe2C6H4]2 ( 6 ) were obtained. The lithium alkoxides 4 – 6 were characterized by 1H, 7Li, and 13C NMR spectroscopy. Crystal structure determinations of 5 and 6 were carried out. Compounds 5 and 6 are examples of structurally characterized solvent‐free chelated dimethylamino lithium alkoxides and 6 is a rare example of this type containing a seven‐membered ring. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
New Copper Complexes Containing Phosphaalkene Ligands. Molecular Structure of [Cu{P(Mes*)C(NMe2)2}2]BF4 (Mes* = 2,4,6‐tBu3C6H2) Reaction of equimolar amounts of the inversely polarized phosphaalkene tBuP=C(NMe2)2 ( 1a ) and copper(I) bromide or copper(I) iodide, respectively, affords complexes [Cu3X3{μ‐P(tBu)C(NMe2)2}3] ( 2 ) (X =Br) and ( 3 ) (X = I) as the formal result of the cyclotrimerization of a 1:1‐adduct. Treatment of 1a with [Cu(L)Cl] (L = PiPr3; SbiPr3) leads to the formation of compounds [CuCl(L){P(tBu)C(NMe2)2}] ( 4a ) (L = PiPr3) and ( 4b ) (L = SbiPr3), respectively. Reaction of [(MeCN)4Cu]BF4 with two equivalents of PhP=C(NMe2)2 ( 1b ) yields complex [Cu{P(Ph)C(NMe2)2}2]BF4 ( 5b ). Similarly, compounds [Cu{P(Aryl)C(NMe2)2}2]BF4 ( 5c (Aryl = Mes and 5d (Aryl = Mes*)) are obtained from ArylP=C(NMe2)2 ( 1c : Aryl = Mes; 1d : Mes*) and [(MeCN)4Cu]BF4 in the presence of SbiPr3. Complexes 2 , 3 , 4a , 4b , and 5b‐5d are characterized by means of elemental analyses and spectroscopy (1H‐, 13C{1H}‐, 31P{1H}‐NMR). The molecular structure of 5d is determined by X‐ray diffraction analysis.  相似文献   

6.
Synthesis and Crystal Structure of the Heterobimetallic Diorganotindichloride (FcN, N)2SnCl2 (FcN, N: (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2}) The heterobimetallic title compound [(FcN, N)2SnCl2] ( 1 ) was obtained by the reaction of [LiFcN, N] with SnCl4 in the molar ratio 1:1 in diethylether as a solvent. The two FcN, N ligands in 1 are bound to Sn through a C‐Sn σ‐bond; the amino N atoms of the side‐chain in FcN, N remain uncoordinated. The crystals contain monomeric molecules with a pseudo‐tetrahedral coordination at the Sn atom: Space group P21/c; Z = 4, lattice dimensions at —90 °C: a = 9.6425(2), b = 21.7974(6), c = 18.4365(4) Å, β = 100.809(2)°, R1obs· = 0.051, wR2obs· = 0.136.  相似文献   

7.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

8.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

9.
Treatment of GaCl3 with one equiv of Li[NC4H3(CH2NMe2)‐2] (n = 1, 2, 3) in diethyl ether at ?78 °C yields GaCl3‐n[NC4H3(CH2NMe2)‐2]n (n = 1, 1 ; n = 2, 2 ; n = 3, 3 ). Compound 1 reacts with two equiv of RLi to afford GaR2[NC4H3(CH2NMe2)‐2] ( 4a, R=Me; 4b, R=Bu ) via transmetallation. Reacting 2 with one equiv of RLi in diethyl ether, 3 and 4 are formed via ligand redistribution. Variable temperature 1H NMR spectroscopic experiments reveal that the five‐coordinate gallium compound 3 is fluxional and results in a coalescence temperature at 5 °C, at which ΔG is calculated at ca. 10.4 Kcal/mole. All the new compounds have been characterized by 1H and 13C NMR spectroscopy and the structures of compounds 3 and 4a have also been determined by X‐ray crystallography.  相似文献   

10.
The Reactions of CH2=P(NMe2)3 with Fe(CO)5, Cr(CO)6, and CS2; Molecular Structures of [MeP(NMe2)3][(CO)5CrC(O)CH=P(NMe2)3], and (CO)4Fe=C(OMe)CH=P(NMe2)3 The ylide CH2=P(NMe2)3 ( 1 ) reacts with several binary transition metal carbonyls M(CO)x to produce the corresponding salt like compounds [MeP(NMe2)3][(CO)x–1MC(O)CH=P(NMe2)3] (M = Fe ( 3 ), Cr ( 4 )). The related reaction with CS2 leads to the salt [MeP(NMe2)3][SC(S)CH=P(NMe2)3] ( 2 ). While 4 is thermally stable, 3 rapidly decomposes at room temperature with formation of [MeP(NMe2)3]2[Fe2(CO)8] ( 8 ). Alkylation of 3 (at –50 °C) and 4 with MeSO3CF3 produces the related carbene complexes (CO)x–1M=C(OMe)CH=P(NMe2)3 ( 5 ) and ( 6 ); the reaction of 3 with Me3SiCl results in the formation of the carbene complex (CO)4Fe=C(OSiMe3)CH=P(NMe2)3 ( 7 ). 4 crystallizes in the space group P212121 (No. 19) with a = 1111.1(2), b = 1476.1(3), c = 1823.1(4) pm and Z = 4. 5 crystallizes in the space group P21/n (No. 14) with a = 1303.6(3), b = 910.5(4), c = 1627.0(4) pm, β = 96.06(2)° and Z = 4. The compounds have been characterized by elemental analyses, NMR (1H, 13C, 31P) and IR spectroscopy.  相似文献   

11.
The formation and crystal structures of bis(1‐naphthyl) diselenide ( 1 ) and bis{[2‐(N,N‐dimethylamino)methyl]phenyl} tetraselenide ( 2 ) are described. Whereas 1 can be produced in good yields, 2 is formed only as a minor product together with the known main product, bis{[2‐(N,N‐dimethylamino)methyl]phenyl} diselenide. The composition of the reaction mixture is semi‐quantitatively estimated by 77Se NMR spectroscopy and DFT calculations. The effect of the n2→σ*(Se–Se) and π→σ*(Se–Se) secondary bonding interactions on the Se–Se bonds is discussed both by DFT calculations and comparison with literature, as available. The bromination of 1 yields monomeric (1‐naphthyl)selenenyl bromide ( 3 ) in good yields. That of the reaction mixture of (C6H4CH2NMe2)Sex (x = 2–4) and Se8 afforded (C6H4CH2NMe2H)2[SeBr4] ( 4 ) and (C6H4CH2NMe2H)2[SeBr6] ( 5 ) in addition to (C6H4CH2NMe2)SeBr, which has been previously reported.  相似文献   

12.
The reaction of 1‐NHPhCHPh‐2‐NMe2C6H4 ( 1 ) and 1‐NHPhCHPhCH2‐2‐NMe2C6H4 ( 2 ) with n‐BuLi in diethyl ether gave the solvent‐free chelated dimethylamino lithium amides [1‐LiNPhCHPh‐2‐NMe2C6H4]2 ( 3 ) and [1‐LiNPhCHPhCH2‐2‐NMe2C6H4]2 ( 4 ). The lithium amides 3 and 4 were characterized by 1H, 7Li, and 13C NMR spectroscopy. A crystal structure determination was carried out on 4 , which is the first example of a structurally characterized solvent‐free dimeric chelated dimethylamino lithium arylamide with three‐coordinate lithium centers that contains a seven‐membered chelate ring. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Heterobimetallic Complexes of Lithium, Aluminum, and Gold with the N ‐[2‐ N ′, N ′‐(dimethylaminoethyl)‐ N ‐methyl‐aminoethyl]‐ferrocenyl Ligand (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2} N‐[2‐N′,N′‐(dimethylaminoethyl)‐N‐methyl‐aminoethyl]ferrocene FcN,NH ( 1 ) reacts with nBuLi under formation of the lithium organyl (FcN,N)Li ( 2 ). At reactions of 2 with AlBr3 and AuCl · PPh3 the heterobimetallic organo derivatives (FcN,N)AlBr2 ( 3 ), (FcN,N)Au · PPh3 ( 4 ) are formed. A detailed characterization of 2 – 4 was carried out by single crystal x‐ray analyses as well as by NMR and Mößbauer spectroscopy.  相似文献   

14.
N‐sulfinylacylamides R‐C(=O)‐N=S=O react with (CF3)2BNMe2 ( 1 ) to form, by [2+4] cycloaddition, six‐membered rings cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(R)‐O for R = Me ( 2 ), t‐Bu ( 3 ), C6H5 ( 4 ), and p‐CH3C6H4 ( 5 ) while N‐sulfinylcarbamic acid esters R‐O‐C(=O)‐N=S=O react with 1 to yield mixtures of six‐membered (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N=C(OR)‐O) and four‐membered rings (cyclo‐(CF3)2B‐NMe2‐S(=O)‐N(C=O)OR) for R = Me ( 6 and 9 ), Et ( 7 and 10 ), and C6H5 ( 8 and 11 ). The structure of 5 has been determined by X‐ray diffraction.  相似文献   

15.
Phosphoraneiminato‐ and Phosphaneimine Complexes of Nickel(II). Crystal Structures of [Ni(O3SCF3)(NPMe3)]4, [Ni4Br5{NP(NMe2)3}3], [NiBr2{HNP(NMe2)3}2], and [Ni(PMePh2)4] Black‐violet single crystals of [Ni(O3SCF3)(NPMe3)]4 ( 1 ) have been prepared from [NiBr(NPMe3)]4 and copper(I)triflate by metathesis reaction. The nickel atoms are associated via μ3‐N bridges of the (NPMe3) groups to form a heterocubane. The triflate ions are bonded to the Ni atoms in a chelate fashion. Blue single crystals of [Ni4Br5{NP(NMe2)3}3] ( 2 ) are obtained by the reaction of NiBr2 with Me3SiNP(NMe2)3 in boiling toluene in the presence of sodium fluoride. The Ni atoms in 2 are associated with three μ3‐bridged nitrogen atoms of the (NP(NMe2)3) groups as well as by a μ3‐Br atom to give a distorted heterocubane. Deep blue single crystals of the phosphaneimine complex [NiBr2{HNP(NMe2)3}2] ( 3 ) are formed from Me3SiNP(NMe2)3 and NiBr2 in boiling dichloromethane. In 3 the Ni atom is tetrahedrally coordinated by the bromine atoms and by the nitrogen atoms of the phosphane imine molecules. Pale red crystals of [Ni(PMePh2)4] ( 4 ) have been obtained by the reaction of [NiBr(NPMe3)]4 with lithium phenylacetilyde in the presence of PMePh2. In 4 the Ni atom is distorted tetrahedrally coordinated by the phosphorus atoms of the phosphane molecules with Ni–P distances of 219.9 pm in average. 1 – 4 have been characterized by crystallographic X‐ray analyses. 1 : Space group P21/n, Z = 4, lattice dimensions at 193 K: a = 1566.7(2); b = 1479.9(1); c = 1960.6(2) pm; β = 105.908(9)°; R = 0.0443. 2 · 3 CH2Cl2: Space group P21/c, Z = 4, lattice dimensions at 293 K: a = 1226.0(3); b = 1614.0(3); c = 2406.0(5) pm; β = 92.34(3)°; R = 0.0703. 3 : Space group C2/c, Z = 4, latttice dimensions at 203 K: a = 1840.7(1); b = 810.1(1); c = 1607.2(2) pm; β = 94.74(1)°, R = 0.0340. 4 : Space group P1, Z = 2, lattice dimensions at 223 K: a = 1053.1(2); b = 1315.0(3); c = 1674.5(3) pm; α = 81.55(1)°; β = 79.15(2)°; γ = 84.91(2)°; R = 0.0497.  相似文献   

16.
Hydrolysereak‐Syntheses, Properties and Molecular Structures of the Heterobimetalorganics of the four‐valued Germanium with the 2‐(Dimethylaminomethyl)ferrocenyl Ligand FcN (η5‐C5H5)Fe[η5‐C5H3(CH2NMe2)‐2] The heterobimetallic lithiumorganyl [2‐(dimethylaminomethyl)ferrocenyl] lithium, FcNLi, reacts with germanium(IV) chloride, GeCl4, under the formation of heterobimetallic germanium(IV) organyls (FcN)nGeCl4‐n (n = 2 ( 1 ), 3 ( 2 )). The heterobimetallic organogermanol (FcN)3GeOH ( 3 ) is formed at hydrolysis of 2 . A detailed characterization of the defined compounds 1 — 3 was carried out by single crystal X‐ray analyses, NMR‐ and mass‐spectrometry.  相似文献   

17.
Polymeric Iodoplumbates – Synthesis and Crystal Structures of (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF, (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF, and (Me3N–C2H4–NMe3)2[Pb2I7]I (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ) and (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF ( 2 ) have almost the same composition, but completely different structures. Both compounds are formed selectively depending on the reaction and crystallization conditions. In 2 the PbII atoms are coordinated either by six bridging I ligands in the two-dimensional [Pb5I14]4– network or by six DMF ligands in the [Pb(dmf)6]2+ cations. In contrast, (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ) contains non-coordinating I anions between the iodoplumbate layers. The iodoplumbate anions in 2 and 3 consist of face and corner sharing PbI6 octahedra, whereas in 1 PbI6 and PbI5(dmf) octahedra share common edges to form a one-dimensional polymeric section of the PbI2 structure. (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ): Space group P1, a = 920.1(3), b = 1597.2(5), c = 1613.9(4) pm, α = 66.02(2), β = 84.53(2), γ = 85.99(2)°, V = 2156(1) · 106 pm3; (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14]·DMF ( 2 ): Space group P21, a = 1201.21(9), b = 3031.1(2), c = 1294.96(9) pm, β = 108.935(7)°, V = 4459.8(5) · 106 pm3; (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ): Space group Pnma, a = 2349.9(2), b = 1623.83(9), c = 980.75(7) pm, V = 3742.4(5) · 106 pm3.  相似文献   

18.
The Hexagallane [Ga6{SiMe(SiMe3)2}6] and the closo‐Hexagallanate [Ga6{Si(CMe3)3}4 (CH2C6H5)2]2— — the Transition to an Unusual precloso‐Cluster The closo hexagallanate [Ga6R4(CH2Ph)2]2— (R = SitBu3) as well as the hexagallane Ga6R6 (R = SiMe(SiMe3)2) with only six cluster electron pairs were isolated from reactions of “GaI” with the corresponding silanides. The structure of the latter is derived from an octahedron by a Jahn‐Teller‐distortion and is different from the capped trigonal bipyramidal one expected by the Wade‐Mingos rules. Both compounds were characterized by X‐ray crystallography. The bonding is discussed with simplified Ga6H6 and Ga6H62— models via DFT methods.  相似文献   

19.
Reaction of C(NMe2)4 with Ni(CO)4 – Syntheses and Structures of [C(NMe2)3][(CO)3NiC(O)NMe2], [C(NMe2)3]2[Ni5(CO)12], and [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] The reaction of C(NMe2)4 with Ni(CO)4 in THF produces the carbamoyl complex [C(NMe2)3][(CO)3NiC(O)NMe2] ( 1 ); side products are the purple cluster compound [C(NMe2)3]2[Ni5(CO)12] · THF ( 2 · THF) and the red cocristallization product [C(NMe2)3]3[Ni6(CO)12][O2CNMe2] ( 3 ). All compounds were studied by X‐ray diffraction analyses. The cations of 3 are all disordered but not those of 1 and 2 . The unit cell of 1 contains two crystallographically independent anions (I and II) which differ in the dihedral angle between the plane of the carbamoyl ligand and the plane defined by the atoms CCarbamoyl–Ni–CO amounting 0° in the anion I and 18° in the anion II.  相似文献   

20.
Crystal Structure of Tetraphenylphosphonium Monothiocyanatohydro-closo-Decaborate, [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN The X-ray structure determination of [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN (monoclinic, space group P21/n, a = 10.6040(10), b = 13.8880(9), c = 33.888(3) Å, β = 94.095(8)°, Z = 4) reveals the S coordination of the SCN substituent with a B? S distance of 1.913(6) Å and a B? S? C angle of 105.3(3)°. The SCN group is nearly linear (178.2(7)°).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号