首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The minimum size of a binary covering code of length n and covering radius r is denoted by K(n,r), and codes of this length are called optimal. For j > 0 and n = 2j, it is known that K(n,1) = 2 · K(n?1,1) = 2n ? j. Say that two binary words of length n form a duo if the Hamming distance between them is 1 or 2. In this paper, it is shown that each optimal binary covering code of length n = 2j, j > 0, and covering radius 1 is the union of duos in just one way, and that the closed neighborhoods of the duos form a tiling of the set of binary words of length n. Methods of constructing such optimal codes from optimal covering codes of length n ? 1 (that is, perfect single‐error‐correcting codes) are discussed. The paper ends with the construction of an optimal covering code of length 16 that does not contain an extension of any optimal covering code of length 15. © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

2.
Let Kq(n,R) denote the minimum number of codewords in any q-ary code of length n and covering radius R. We collect lower and upper bounds for Kq(n,R) where 6 ≤ q ≤ 21 and R ≤ 3. For q ≤ 10, we consider lengths n ≤ 10, and for q ≥ 11, we consider n ≤ 8. This extends earlier results, which have been tabulated for 2 ≤ q ≤ 5. We survey known bounds and obtain some new results as well, also for s-surjective codes, which are closely related to covering codes and utilized in some of the constructions.AMS Classification: 94B75, 94B25, 94B65Gerzson Kéri - Supported in part by the Hungarian National Research Fund, Grant No. OTKA-T029572.Patric R. J. Östergård - Supported in part by the Academy of Finland, Grants No. 100500 and No. 202315.  相似文献   

3.
On the way of generalizing recent results by Cock and the second author, it is shown that when the basis q is odd, BCH codes can be lengthened to obtain new codes with covering radius R=2. These constructions (together with a lengthening construction by the first author) give new infinite families of linear covering codes with codimension r=2k+1 (the case q=3, r=4k+1 was considered earlier). New code families with r=4k are also obtained. An updated table of upper bounds on the length function for linear codes with 24, R=2, and q=3,5 is given.  相似文献   

4.
We show that the covering radius R of an [n,k,d] code over Fq is bounded above by R n-n q(k, d/q). We strengthen this bound when R d and find conditions under which equality holds.As applications of this and other bounds, we show that all binary linear codes of lengths up to 15, or codimension up to 9, are normal. We also establish the normality of most codes of length 16 and many of codimension 10. These results have applications in the construction of codes that attain t[n,k,/it>], the smallest covering radius of any binary linear [n,k].We also prove some new results on the amalgamated direct sum (ADS) construction of Graham and Sloane. We find new conditions assuring normality of the ADS; covering radius 1 less than previously guaranteed for ADS of codes with even norms; good covering codes as ADS without the hypothesis of normality, from concepts p- stable and s- stable; codes with best known covering radii as ADS of two, often cyclic, codes (thus retaining structure so as to be suitable for practical applications).  相似文献   

5.
A code is qm‐ary q‐linear if its alphabet forms an m‐dimensional vector space over ??q and the code is linear over ??q. These additive codes form a natural generalization of linear codes. Our main results are direct constructions of certain families of additive codes. These comprise the additive generalization of the Kasami codes, an additive generalization of the Bose‐Bush construction of orthogonal arrays of strength 2 as well as a class of additive codes which are being used for deep space communication. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 207–216, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.20000  相似文献   

6.
An updated table of K2,3(b,t;R)—the minimum cardinality of a code with b binary coordinates, t ternary coordinates, and covering radius R—is presented for b + t ≤ 13, R ≤ 3. The results include new explanations of short binary and ternary covering codes, several new constructions and codes, and a general lower bound for R = 1. © 2004 Wiley Periodicals, Inc.  相似文献   

7.
The shortest possible length of a q-ary linear code of covering radius R and codimension r is called the length function and is denoted by q (r, R). Constructions of codes with covering radius 3 are here developed, which improve best known upper bounds on q (r, 3). General constructions are given and upper bounds on q (r, 3) for q = 3, 4, 5, 7 and r ≤ 24 are tabulated.  相似文献   

8.
An (n, M, d)q code is a q‐ary code of length n, cardinality M, and minimum distance d. We show that there exists no (15,5,4) resolvable balanced incomplete block design (RBIBD) by showing that there exists no (equidistant) (14,15,10)3 code. This is accomplished by an exhaustive computer search using an orderly algorithm combined with a maximum clique algorithm. © 2001 John Wiley & Sons, Inc. J Combin Designs 9: 357–362, 2001  相似文献   

9.
In this paper, the properties of the i-components of Hamming codes are described. We suggest constructions of the admissible families of components of Hamming codes. Each q-ary code of length m and minimum distance 5 (for q = 3, the minimum distance is 3) is shown to embed in a q-ary 1-perfect code of length n = (q m − 1)/(q − 1). Moreover, each binary code of length m+k and minimum distance 3k + 3 embeds in a binary 1-perfect code of length n = 2 m − 1.  相似文献   

10.
We show that a code C of length n over an alphabet Q of size q with minimum distance 2 and covering radius 1 satisfies |C| ≥ qn−1/(n − 1). For the special case n = q = 4 the smallest known example has |C| = 31. We give a construction for such a code C with |C| = 28.  相似文献   

11.
The minimal cardinality of a q-ary code of length n and covering radius at most R is denoted by Kq(n, R); if we have the additional requirement that the minimum distance be at least d, it is denoted by Kq(n, R, d). Obviously, Kq(n, R, d) Kq(n, R). In this paper, we study instances for which Kq(n,1,2) > Kq(n, 1) and, in particular, determine K4(4,1,2)=28 > 24=K4(4,1).Supported in part by the Academy of Finland under grant 100500.  相似文献   

12.
An (n, M, d)q code is a q‐ary code of length n, cardinality M, and minimum distance d. We show that there exists no (15,5,4) resolvable balanced incomplete block design (RBIBD) by showing that there exists no (equidistant) (14,15,10)3 code. This is accomplished by an exhaustive computer search using an orderly algorithm combined with a maximum clique algorithm. © 2001 John Wiley & Sons, Inc. J Combin Designs 9: 227–232, 2001  相似文献   

13.
One of the first results one meets in coding theory is that a binary linear [n,k,d] code, whose minimum distance is odd, can be extended to an [n + 1, k, d + 1] code. This is one of the few elementary results about binary codes which does not obviously generalise to q-ary codes. The aim of this paper is to give a simple sufficient condition for a q-ary [n, k, d] code to be extendable to an [n + 1, k, d + 1] code. Applications will be given to the construction and classification of good codes, to proving the non- existence of certain codes, and also an application in finite geometry.  相似文献   

14.
Clifford Algebras generalize curvature and torsion in R(p; q) (p and q are positive integers and p + q = n dimension of the space). General formulas are obtained. We study the special case q = 0. Moreover if n = 3 we obtain Frenet formulas.
Résumé Les algébres de Clifford généralisent la courbure et la torsion dans R(p; q) (p q nombres positifs entiers et p + q = n, dimension de l’espace). On obtient aisément des formules générales. Nous étudions le cas particulier q = 0. Si en outre n = 3 on retrouve les formules de Frenet.
  相似文献   

15.
The rank of a q-ary code C is the dimension of the subspace spanned by C. The kernel of a q-ary code C of length n can be defined as the set of all translations leaving C invariant. Some relations between the rank and the dimension of the kernel of q-ary 1-perfect codes, over as well as over the prime field , are established. Q-ary 1-perfect codes of length n=(qm − 1)/(q − 1) with different kernel dimensions using switching constructions are constructed and some upper and lower bounds for the dimension of the kernel, once the rank is given, are established.Communicated by: I.F. Blake  相似文献   

16.
A linear code in F n q with dimension k and minimum distance at least d is called an [n, k, d] q code. We here consider the problem of classifying all [n, k, d] q codes given n, k, d, and q. In other words, given the Hamming space F n q and a dimension k, we classify all k-dimensional subspaces of the Hamming space with minimum distance at least d. Our classification is an iterative procedure where equivalent codes are identified by mapping the code equivalence problem into the graph isomorphism problem, which is solved using the program nauty. For d = 3, the classification is explicitly carried out for binary codes of length n 14, ternary codes of length n 11, and quaternary codes of length n 10.  相似文献   

17.
The nonsystematic perfect q-ary codes over finite field F q of length n = (q m − 1)/(q − 1) are constructed in the case when m ≥ 4 and q ≥ 2 and also when m = 3 and q is not prime. For q ≠ 3, 5, these codes can be constructed by switching seven disjoint components of the Hamming code H q n ; and, for q = 3, 5, eight disjoint components.  相似文献   

18.
The q-rook monoid R n(q) is a semisimple (q)-algebra that specializes when q 1 to [R n], where R n is the monoid of n × n matrices with entries from {0, 1} and at most one nonzero entry in each row and column. We use a Schur-Weyl duality between R n(q) and the quantum general linear group to compute a Frobenius formula, in the ring of symmetric functions, for the irreducible characters of R n(q). We then derive a recursive Murnaghan-Nakayama rule for these characters, and we use Robinson-Schensted-Knuth insertion to derive a Roichman rule for these characters. We also define a class of standard elements on which it is sufficient to compute characters. The results for R n(q) specialize when q = 1 to analogous results for R n.  相似文献   

19.
The minimum size of a binary covering code of length n and covering radius r is denoted by K (n, r) and corresponding codes are called optimal. In this article a classification up to equivalence of all optimal covering codes having either length at most 8 or cardinality at most 4 is completed. Moreover, we prove that K (9, 2) = 16. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 391–401, 2000  相似文献   

20.
Extending MDS Codes   总被引:1,自引:0,他引:1  
A q-ary (n, k)-MDS code, linear or not, satisfies nq + k − 1. A code meeting this bound is said to have maximum length. Using purely combinatorial methods we show that an MDS code with n = q + k − 2 can be uniquely extended to a maximum length code if and only if q is even. This result is best possible in the sense that there is, for example, a non-extendable 4-ary (5, 4)-MDS code. It may be that the proof of our result is as interesting as the result itself. We provide a simple necessary and sufficient condition for code extendability. In future work, this condition might be suitably modified to give an extendability condition for arbitrary (shorter) MDS codes.Received December 1, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号