首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We consider random walks on several classes of graphs and explore the likely structure of the vacant set, i.e. the set of unvisited vertices. Let Γ(t) be the subgraph induced by the vacant set of the walk at step t. We show that for random graphs Gn,p (above the connectivity threshold) and for random regular graphs Gr,r ≥ 3, the graph Γ(t) undergoes a phase transition in the sense of the well‐known ErdJW‐RSAT1100590x.png ‐Renyi phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique giant component, plus components of size O(log n), and for t ≥ (1 + ε)t* all components are of size O(log n). For Gn,p and Gr we give the value of t*, and the size of Γ(t). For Gr, we also give the degree sequence of Γ(t), the size of the giant component (if any) of Γ(t) and the number of tree components of Γ(t) of a given size k = O(log n). We also show that for random digraphs Dn,p above the strong connectivity threshold, there is a similar directed phase transition. Thus for t ≤ (1 ‐ ε)t*, there is a unique strongly connected giant component, plus strongly connected components of size O(log n), and for t ≥ (1 + ε)t* all strongly connected components are of size O(log n). © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

2.
We study the critical behavior of the random digraph D(n,p) for np = 1 + ε, where ε = ε(n) = o(1). We show that if ε3n →—∞, then a.a.s. D(n,p) consists of components which are either isolated vertices or directed cycles, each of size Op(|ε|?1). On the other hand, if ε3n, then a.a.s. the structure of D(n,p) is dominated by the unique complex component of size (4 + o(1))ε2n, whereas all other components are of size Op?1). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

3.
An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one. The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G). The least positive integer k such that for any k′ ≥ k there exists an equitable coloring of a graph G with k′ colors is said to be the equitable chromatic threshold of G and is denoted by χ=*(G). In this paper, we investigate the asymptotic behavior of these coloring parameters in the probability space G(n,p) of random graphs. We prove that if n?1/5+? < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) = (1 + o(1))χ(G(n,p)) holds (where χ(G(n,p)) is the ordinary chromatic number of G(n,p)). We also show that there exists a constant C such that if C/n < p < 0.99, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) ≤ (2 + o(1))χ(G(n,p)). Concerning the equitable chromatic threshold, we prove that if n?(1??) < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=* (G(n,p)) ≤ (2 + o(1))χ(G(n,p)) holds, and if < p < 0.99 for some 0 < ?, then almost surely we have χ(G(n,p)) ≤ χ=*(G(n,p)) = O?(χ(G(n,p))). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

4.
Let G be an undirected and simple graph on n vertices. Let ω, α and χ denote the number of components, the independence number and the connectivity number of G. G is called a 1-tough graph if ω(GS) ? |S| for any subset S of V(G) such that ω(G ? S) > 1. Let σ2 = min {d(v) + d(w)|v and w are nonadjacent}. Note that the difference α - χ in 1-tough graph may be made arbitrary large. In this paper we prove that any 1-tough graph with σ2 > n + χ - α is hamiltonian.  相似文献   

5.
The behavior of the random graph G(n,p) around the critical probability pc = is well understood. When p = (1 + O(n1/3))pc the components are roughly of size n2/3 and converge, when scaled by n?2/3, to excursion lengths of a Brownian motion with parabolic drift. In particular, in this regime, they are not concentrated. When p = (1 ‐ ?(n))pc with ?(n)n1/3 →∞ (the subcritical regime) the largest component is concentrated around 2??2 log(?3n). When p = (1 + ?(n))pc with ?(n)n1/3 →∞ (the supercritical regime), the largest component is concentrated around 2?n and a duality principle holds: other component sizes are distributed as in the subcritical regime. Itai Benjamini asked whether the same phenomenon occurs in a random d‐regular graph. Some results in this direction were obtained by (Pittel, Ann probab 36 (2008) 1359–1389). In this work, we give a complete affirmative answer, showing that the same limiting behavior (with suitable d dependent factors in the non‐critical regimes) extends to random d‐regular graphs. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

6.
We study the cover time of a random walk on the largest component of the random graph Gn,p. We determine its value up to a factor 1 + o(1) whenever np = c > 1, c = O(lnn). In particular, we show that the cover time is not monotone for c = Θ(lnn). We also determine the cover time of the k‐cores, k ≥ 2. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

7.
Rank‐width of a graph G, denoted by rw (G), is a width parameter of graphs introduced by Oum and Seymour [J Combin Theory Ser B 96 (2006), 514–528]. We investigate the asymptotic behavior of rank‐width of a random graph G(n, p). We show that, asymptotically almost surely, (i) if p∈(0, 1) is a constant, then rw (G(n, p)) = ?n/3??O(1), (ii) if , then rw (G(n, p)) = ?1/3??o(n), (iii) if p = c/n and c>1, then rw (G(n, p))?rn for some r = r(c), and (iv) if p?c/n and c81, then rw (G(n, p))?2. As a corollary, we deduce that the tree‐width of G(n, p) is linear in n whenever p = c/n for each c>1, answering a question of Gao [2006]. © 2011 Wiley Periodicals, Inc. J Graph Theory.  相似文献   

8.
We consider the problem of finding a sparse set of edges containing the minimum spanning tree (MST) of a random subgraph of G with high probability. The two random models that we consider are subgraphs induced by a random subset of vertices, each vertex included independently with probability p, and subgraphs generated as a random subset of edges, each edge with probability p. Let n denote the number of vertices, choose p ∈ (0, 1) possibly depending on n, and let b = 1/(1 ? p). We show that in both random models, for any weighted graph G, there is a set of edges Q of cardinality O(n logbn) that contains the minimum spanning tree of a random subgraph of G with high probability. This result is asymptotically optimal. As a consequence, we also give a bound of O(kn) on the size of the union of all minimum spanning trees of G with some k vertices (or edges) removed. More generally, we show a bound of O(n logbn) on the size of a covering set in a matroid of rank n, which contains the minimum‐weight basis of a random subset with high probability. Also, we give a randomized algorithm that calls an MST subroutine only a polylogarithmic number of times and finds the covering set with high probability. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

9.
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance dG(u, v) is at least dC(u, v)?e(n). Let ω(n) be any function tending to infinity with n. We consider a random d‐regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n) = logd?1logd?1n+ ω(n) and |C| = 2logd?1n+ O(ω(n)). Along the way, we obtain results on near‐geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. Copyright © 2010 John Wiley & Sons, Ltd. J Graph Theory 66:115‐136, 2011  相似文献   

10.
Let a random directed acyclic graph be defined as being obtained from the random graph Gn, p by orienting the edges according to the ordering of vertices. Let γn* be the size of the largest (reflexive, transitive) closure of a vertex. For p=c(log n)/n, we prove that, with high probability, γn* is asymptotic to nc log n, 2n(log log n)/log n, and n(1−1/c) depending on whether c<1, c=1, or c>1. We also determine the limiting distribution of the first vertex closure in all three ranges of c. As an application, we show that the expected number of comparable pairs is asymptotic to n1+c/c log n, ½(n(log log n)/log n)2, and ½(n(1−1/c))2, respectively. © 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18: 164–184, 2001  相似文献   

11.
Let ??k(n, p) be the random k‐uniform hypergraph on V = [n] with edge probability p. Motivated by a theorem of Erd?s and Rényi 7 regarding when a random graph G(n, p) = ??2(n, p) has a perfect matching, the following conjecture may be raised. (See J. Schmidt and E. Shamir 16 for a weaker version.) Conjecture. Let k|n for fixed k ≥ 3, and the expected degree d(n, p) = p(). Then (Erd?s and Rényi 7 proved this for G(n, p).) Assuming d(n, p)/n1/2 → ∞, Schmidt and Shamir 16 were able to prove that ??k(n, p) contains a perfect matching with probability 1 ? o(1). Frieze and Janson 8 showed that a weaker condition d(n, p)/n1/3 → ∞ was enough. In this paper, we further weaken the condition to A condition for a similar problem about a perfect triangle packing of G(n, p) is also obtained. A perfect triangle packing of a graph is a collection of vertex disjoint triangles whose union is the entire vertex set. Improving a condition pcn?2/3+1/15 of Krivelevich 12 , it is shown that if 3|n and p ? n?2/3+1/18, then © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 23: 111–132, 2003  相似文献   

12.
We consider non-overlapping subgraphs of fixed order in the random graph Kn, p(n). Fix a strictly strongly balanced graph G. A subgraph of Kn, p(n) isomorphic to G is called a G-subgraph. Let Xn be the number of G-subgraphs of Kn, p(n) vertex disjoint to all other G-subgraphs. We show that if E[Xn]→∞ as n→, then Xn/E[Xn] converges to 1 in probability. Also, if E[Xn]→c as n→∞, then Xn satisfies a Poisson limit theorem. the Poisson limit theorem is shown using a correlation inequality similar to those appeared in Janson, ?uczak, and Ruciñski[8] and Boppana and Spencer [4].  相似文献   

13.
. Let d(D) (resp., d(G)) denote the diameter and r(D) (resp., r(G)) the radius of a digraph D (resp., graph G). Let G×H denote the cartesian product of two graphs G and H. An orientation D of G is said to be (r, d)-invariant if r(D)=r(G) and d(D)=d(G). Let {T i }, i=1,…,n, where n≥2, be a family of trees. In this paper, we show that the graph ∏ i =1 n T i admits an (r, d)-invariant orientation provided that d(T 1)≥d(T 2)≥4 for n=2, and d(T 1)≥5 and d(T 2)≥4 for n≥3. Received: July 30, 1997 Final version received: April 20, 1998  相似文献   

14.
We prove that random d‐regular Cayley graphs of the symmetric group asymptotically almost surely have girth at least (logd‐1|G|)1/2/2 and that random d‐regular Cayley graphs of simple algebraic groups over ??q asymptotically almost surely have girth at least log d‐1|G|/dim(G). For the symmetric p‐groups the girth is between loglog |G| and (log |G|)α with α < 1. Several conjectures and open questions are presented. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

15.
Let be a random graph process in which in each step we add to a graph a new edge, chosen at random from all available pairs. Define the leader of G(n, M) as either the unique largest component or, if G(n, M) contains many components of the maximum size, the one from the largest components which emerged first during the process. We show that the longest period between two changes of leaders in the random graph process is, with probability tending to 1 as n →∞, of the order of n/log log n/log n. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Let n be a positive integer and λ > 0 a real number. Let Vn be a set of n points in the unit disk selected uniformly and independently at random. Define G(λ, n) to be the graph with vertex set Vn, in which two vertices are adjacent if and only if their Euclidean distance is at most λ. We call this graph a unit disk random graph. Let and let X be the number of isolated points in G(λ, n). We prove that almost always Xn when 0 ≤ c < 1. It is known that if where ?(n) → ∞, then G(λ, n) is connected. By extending a method of Penrose, we show that under the same condition on λ, there exists a constant K such that the diameter of G(λ, n) is bounded above by K · 2/λ. Furthermore, with a new geometric construction, we show that when and c > 2.26164 …, the diameter of G(λ, n) is bounded by (4 + o(1))/λ; and we modify this construction to yield a function c(δ) > 0 such that the diameter is at most 2(1 + δ + o(1))/λ when c > c(δ). © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

17.
Let fd (G) denote the minimum number of edges that have to be added to a graph G to transform it into a graph of diameter at most d. We prove that for any graph G with maximum degree D and n > n0 (D) vertices, f2(G) = nD − 1 and f3(G) ≥ nO(D3). For d ≥ 4, fd (G) depends strongly on the actual structure of G, not only on the maximum degree of G. We prove that the maximum of fd (G) over all connected graphs on n vertices is n/⌊d/2 ⌋ − O(1). As a byproduct, we show that for the n‐cycle Cn, fd (Cn) = n/(2⌊d/2 ⌋ − 1) − O(1) for every d and n, improving earlier estimates of Chung and Garey in certain ranges. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 161–172, 2000  相似文献   

18.
Let O(G) denote the set of odd-degree vertices of a graph G. Let t ? N and let ??t denote the family of graphs G whose edge set has a partition. E(g) = E1 U E2 U … U Etsuch that O(G) = O(G[Ei]) (1 ? i ? t). This partition is associated with a double cycle cover of G. We show that if a graph G is at most 5 edges short of being 4-edge-connected, then exactly one of these holds: G ? ??3, G has at least one cut-edge, or G is contractible to the Petersen graph. We also improve a sufficient condition of Jaeger for G ? ??2p+1(p ? N).  相似文献   

19.
A random geometric graph G n is constructed by taking vertices X 1,…,X n ∈ℝ d at random (i.i.d. according to some probability distribution ν with a bounded density function) and including an edge between X i and X j if ‖X i -X j ‖ < r where r = r(n) > 0. We prove a conjecture of Penrose ([14]) stating that when r=r(n) is chosen such that nr d = o(lnn) then the probability distribution of the clique number ω(G n ) becomes concentrated on two consecutive integers and we show that the same holds for a number of other graph parameters including the chromatic number χ(G n ). The author was partially supported by EPSRC, the Department of Statistics, Bekkerla-Bastide fonds, Dr. Hendrik Muller’s Vaderlandsch fonds, and Prins Bernhard Cultuurfonds.  相似文献   

20.
For a graph G, the cochromatic number of G, denoted z(G), is the least m for which there is a partition of the vertex set of G having order m. where each part induces a complete or empty graph. We show that if {Gn} is a family of graphs where Gn has o(n2 log2(n)) edges, then z(Gn) = o(n). We turn our attention to dichromatic numbers. Given a digraph D, the dichromatic number of D is the minimum number of parts the vertex set of D must be partitioned into so that each part induces an acyclic digraph. Given an (undirected) graph G, the dichromatic number of G, denoted d(G), is the maximum dichromatic number of all orientations of G. Let m be an integer; by d(m) we mean the minimum size of all graphs G where d(G) = m. We show that d(m) = θ(m2 ln2(m)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号