首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
[AuII([12]anS4)]2+ – X‐ and Q‐Band EPR Evidence of a New Monomeric Gold(II) Compound The reaction of [AuIIICl4] with the thiacrown ether [12]aneS4 leads to an instable [AuII([12]anS4)]2+ complex (5d9, S = 1/2) which was characterized by X‐ and Q‐ band EPR. The spin Hamiltonian parameters g , A Au and P Au were derived using a program package allowing an exact diagonalisation of the spin‐Hamiltonian‐Matrix. The EPR parameters suggest the coordination of only one thiacrown ether ligand in the new AuII complex.  相似文献   

2.
The reaction of [AuIII(mnt)2]? with (n‐Bu4N)[BH4] in acetone leads to the formation of [AuII(mnt)2]2?, which is the second stable mononuclear AuII complex characterized by X‐ray structure analysis. (n‐Bu4N)2[AuII(mnt)2] crystallizes triclinic, P (a = 904.24(5), b = 989.55(5), c = 1627.35(10) pm, α = 92.040(7), β = 94.937(7), γ = 107.220(6)°, Z = 1) with two molecules acetone per unit cell. The anion is planar. From EPR investigations using single crystals of (n‐Bu4N)2[AuII(mnt)2] the g tensor components were derived. Information about magnetic exchange interactions were obtained from line width analyses.  相似文献   

3.
The NiII complexes [Ni([9]aneNS2‐CH3)2]2+ ([9]aneNS2‐CH3=N‐methyl‐1‐aza‐4,7‐dithiacyclononane), [Ni(bis[9]aneNS2‐C2H4)]2+ (bis[9]aneNS2‐C2H4=1,2‐bis‐(1‐aza‐4,7‐dithiacyclononylethane) and [Ni([9]aneS3)2]2+ ([9]aneS3=1,4,7‐trithiacyclononane) have been prepared and can be electrochemically and chemically oxidized to give the formal NiIII products, which have been characterized by X‐ray crystallography, UV/Vis and multi‐frequency EPR spectroscopy. The single‐crystal X‐ray structure of [NiIII([9]aneNS2‐CH3)2](ClO4)6?(H5O2)3 reveals an octahedral co‐ordination at the Ni centre, while the crystal structure of [NiIII(bis[9]aneNS2‐C2H4)](ClO4)6?(H3O)3? 3H2O exhibits a more distorted co‐ordination. In the homoleptic analogue, [NiIII([9]aneS3)2](ClO4)3, structurally characterized at 30 K, the Ni? S distances [2.249(6), 2.251(5) and 2.437(2) Å] are consistent with a Jahn–Teller distorted octahedral stereochemistry. [Ni([9]aneNS2‐CH3)2](PF6)2 shows a one‐electron oxidation process in MeCN (0.2 M NBu4PF6, 293 K) at E1/2=+1.10 V versus Fc+/Fc assigned to a formal NiIII/NiII couple. [Ni(bis[9]aneNS2‐C2H4)](PF6)2 exhibits a one‐electron oxidation process at E1/2=+0.98 V and a reduction process at E1/2=?1.25 V assigned to NiII/NiIII and NiII/NiI couples, respectively. The multi‐frequency X‐, L‐, S‐, K‐band EPR spectra of the 3+ cations and their 86.2 % 61Ni‐enriched analogues were simulated. Treatment of the spin Hamiltonian parameters by perturbation theory reveals that the SOMO has 50.6 %, 42.8 % and 37.2 % Ni character in [Ni([9]aneNS2‐CH3)2]3+, [Ni(bis[9]aneNS2‐C2H4)]3+ and [Ni([9]aneS3)2]3+, respectively, consistent with DFT calculations, and reflecting delocalisation of charge onto the S‐thioether centres. EPR spectra for [61Ni([9]aneS3)2]3+ are consistent with a dynamic Jahn–Teller distortion in this compound.  相似文献   

4.
A Contribution to Rhenium(II)‐, Osmium(II)‐, and Technetium(II)‐Thionitrosyl‐Complexes: Preparation, Structures, and EPR‐Spectra The reaction of [ReVINCl4] and [OsVINCl4] with S2Cl2 leads to the formation of the thionitrosyl complexes [MII(NS)Cl4] (M = Re, Os) which could not be isolated as pure compounds. Addition of pyridine to the reaction mixture results in the formation of the stable compounds trans‐(Ph4P)[OsII(NS)Cl4py], trans‐(Hpy)[OsII(NS)Cl4py], trans‐(Ph4P)[ReII(NS)Cl4py], and cis‐(Ph4P)[ReII(NS)Cl4py]. The crystal structure analyses show for trans‐(Ph4P)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 12.430(3)Å, b = 18.320(4)Å, c = 15.000(3)Å, β = 114.20(3)°, Z = 4), trans‐(Hpy)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 7.689(1)Å, b = 10.202(2)Å, c = 20.485(5)Å, β = 92.878(4)°, Z = 4), trans‐(Ph4P)[ReII(NS)Cl4py] (triclinic, P1¯, a = 9.331(5)Å, b = 12.068(5)Å, c = 15.411(5)Å, α = 105.25(1)°, β = 90.23(1)°, γ = 91.62(1)°, Z = 2), and cis‐(Ph4P)[ReII(NS)Cl4py] (monoclinic, P21/c, a = 10.361(1)Å, b = 16.091(2)Å, c = 17.835(2)Å, β = 90.524(2)°, Z = 4) M‐N‐S angles in the range 168‐175°. This indicates a nearly linear coordination of the NS ligand. The metal atom is octahedrally coordinated in all cases. The rhenium(II) thionitrosyl complexes (5d5 “low‐spin” configuration, S = 1/2) are studied by EPR in the temperature range 295 > T > 130 K. In addition to the detection of the complexes formed during the reaction of [ReVINCl4] with S2Cl2 EPR investigations on diamagnetically diluted powders and single crystals of the system (Ph4P)[ReII/OsII(NS)Cl4py] are reported. The 185, 187Re hyperfine parameters are used to get information about the spin‐density distribution of the unpaired electron in the complexes under study. [TcVINCl4] reacts with S2Cl2 under formation of [TcII(NS)Cl4] which is not stable and decomposes under S8 elimination and rebuilding of [TcVINCl4] as found by EPR monitoring of the reaction.  相似文献   

5.
A tray‐shaped PdII3AuI3 complex ( 1 ) is prepared from 3,5‐bis(3‐pyridyl)pyrazole by means of tricyclization with AuI followed by PdII clipping. Tray 1 is an efficient scaffold for the modular assembly of [3×n] AuI clusters. Treatment of 1 with the AuI3 tricyclic guest 2 in H2O/CH3CN (7:3) or H2O results in the selective formation of a [3×2] cluster ( 1 ? 2 ) or a [3×3] cluster ( 1 ? 2 ? 1 ), respectively. Upon subsequent addition of AgI ions, these complexes are converted to an unprecedented Au3–Au3–Ag–Au3–Au3 metal ion cluster.  相似文献   

6.
A tray‐shaped PdII3AuI3 complex ( 1 ) is prepared from 3,5‐bis(3‐pyridyl)pyrazole by means of tricyclization with AuI followed by PdII clipping. Tray 1 is an efficient scaffold for the modular assembly of [3×n] AuI clusters. Treatment of 1 with the AuI3 tricyclic guest 2 in H2O/CH3CN (7:3) or H2O results in the selective formation of a [3×2] cluster ( 1 ⋅ 2 ) or a [3×3] cluster ( 1 ⋅ 2 ⋅ 1 ), respectively. Upon subsequent addition of AgI ions, these complexes are converted to an unprecedented Au3–Au3–Ag–Au3–Au3 metal ion cluster.  相似文献   

7.
Solvolysis of [RhMe(CF3SO3)2(Me3[9]aneN3)] ( 1 ) (Me3[9]aneN3 = 1, 4, 7‐trimethyl‐1, 4, 7‐triazacyclononane) in CH3CN, DMSO or pyrazole (L) leads to substitution of both trifluoromethylsulfonate ligands and formation of the cationic complexes [RhMeL2(Me3[9]aneN3)](CF3SO3)2 3—5 . In contrast, treatment of [RuCl3(Me3[9]aneN3)] ( 2 ) with Ag(CF3SO3) in a 1:3 ratio for 2h in CH3CN leads to formation of the tetranuclear complex [{RuCl3(Me3[9]aneN3)}2Ag2(CF3SO3)(CH3CN)](CF3SO3) · CH3CN ( 6 ) with a novel [(RuCl3)2Ag2] core. More forcing conditions enable the substitution of respectively one or two chloride ligands by CH3CN (reflux 18h) or DMF (85°C, 1h) to afford [RuCl2(CH3CN)(Me3[9]aneN3)](CF3SO3) ( 7 ) and [RuCl(DMF)2(Me3[9]aneN3)](CF3SO3)2 ( 8 ). The heteroleptic sandwich complex [Ru([9]aneS3)(Me3[9]aneN3)](CF3SO3)2 ( 9 ) can be prepared by reduction of 2 with Zn powder in acetone in the presence of 3 equiv. of Ag(CF3SO3), followed by addition of [9]aneS3 (1, 4, 7‐trithiacyclononane). The redox potential E°(Ru3+/Ru2+) of +1.87 V vs NHE for 9 is only —0.12 V lower than that of the homoleptic complex [Ru([9]aneS3)2]2+. Crystal structures are reported for 3 — 9 .  相似文献   

8.
A topologically complex peptide [4]catenane with the crossing number of 12 was synthesized by a folding and assembly strategy wherein the folding and metal‐directed self‐assembly of a short peptide fragment occur simultaneously. The latent Ω‐looped conformation of the Pro‐Gly‐Pro sequence was found only when pyridines at the C‐ and N‐termini coordinatively bind metal ions (AgI or AuI). Crystallographic studies revealed that the Ω‐looped motifs formed four M3L3 macrocycles that were intermolecularly entwined to generate an unprecedented peptide [4]catenane topology.  相似文献   

9.
Synthesis, Structures, EPR and ENDOR Investigations on Transition Metal Complexes of N, N‐diisobutyl‐N′‐(2, 6‐difluoro)benzoyl selenourea The synthesis and the structures of the NiII and PdII complexes of the ligand N, N‐diisobutyl‐N′‐(2, 6‐difluoro)benzoylselenourea HBui2dfbsu are reported. The ligands coordinate bidentately forming bis‐chelates. The structure of the ligand could not be obtained, however, the structure of its O‐ethyl ester will be reported. Attempts to prepare the CuII complex result only in the formation of oily products. However, the CuII complex could be incorporated into the corresponding NiII and PdII compounds. From this diamagnetically diluted powder and single‐crystal samples were obtained being suitable for EPR‐ENDOR measurements. We report X‐ and Q‐band EPR investigations on the systems [Cu/Ni(Bui2dfbsu)2] and [Cu/Pd(Bui2dfbsu)2] as well as a single‐crystal X‐band EPR study for [Cu/Ni(Bui2dfbsu)2]. The obtained 63, 65Cu and 77Se hyperfine structure tensors allow a determination of the spin‐density distribution within the first coordination sphere. In addition, orientation selective 19F Q‐band pulse ENDOR investigations on powder‐samples of [Cu/Ni(Bui2dfbsu)2] have been performed. The hyperfine structure tensors of two intramolecular 19F atoms could be determined. According to the small 19F couplings only a vanishingly small spin‐density of < 1 % was obtained for these 19F atoms.  相似文献   

10.
A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4′‐bis(tert‐butyl)‐2, 2′‐bipyridine (tBu2bpy) and S2 =1, 2‐dithiooxalate, (dto), 1, 2‐dithiosquarate, (dtsq), maleonitrile‐1, 2‐dithiolate, or 1, 2‐dicyanoethene‐1, 2‐dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi‐occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X‐ray structure analysis to prove the coordination geometry. The complex crystallizes in a square‐planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) Å, b = 18.266(2) Å, c = 12.6566(12) Å, β = 112.095(7)°. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.  相似文献   

11.
The reaction of [Os3(CO)12 with [12]aneS3 ([12]aneS3  {(CH2)3S}3) in octane for 6 h, under reflux, led to isolation of two products [Os3(CO)11([12]aneS3)] (1) and [Os4(CO) 13([12]aneS3)] (2), while with [Ru3(CO)12] under similar conditions, in THF, a number of products were obtained, including [Ru4(CO)11([12]aneS3)] (3), [Ru5(CO)13([12]aneS3)] (4), and [Ru6(CO)16([12]aneS3)] (5). An X-ray diffraction study of 2 shows that the macrocycle is coordinated to the ‘wingtips’ of an Os4 butterfly through the two electron pairs on one sulphur atom, while in 5 all three sulphur atoms of the macrocycle coordinate to two of the Ru atoms in a spiked edge-bridged tetrahedral metal framework.  相似文献   

12.
The reaction of MnII and [NEt4]CN leads to the isolation of solvated [NEt4]Mn3(CN)7 ( 1 ) and [NEt4]2Mn3(CN)8 ( 2 ), which have hexagonal unit cells [ 1 : R$\bar 3$ m, a=8.0738(1), c=29.086(1) Å; 2 : P$\bar 3$ m1, a=7.9992(3), c=14.014(1) Å] rather than the face centered cubic lattice that is typical of Prussian blue structured materials. The formula units of both 1 and 2 are composed of one low‐ and two high‐spin MnII ions. Each low‐spin, octahedral [MnII(CN)6]4? bonds to six high‐spin tetrahedral MnII ions through the N atoms, and each of the tetrahedral MnII ions are bound to three low‐spin octahedral [MnII(CN)6]4? moieties. For 2 , the fourth cyanide on the tetrahedral MnII site is C bound and is terminal. In contrast, it is orientationally disordered and bridges two tetrahedral MnII centers for 1 forming an extended 3D network structure. The layers of octahedra are separated by 14.01 Å (c axis) for 2 , and 9.70 Å (c/3) for 1 . The [NEt4]+ cations and solvent are disordered and reside between the layers. Both 1 and 2 possess antiferromagnetic superexchange coupling between each low‐spin (S=1/2) octahedral MnII site and two high‐spin (S=5/2) tetrahedral MnII sites within a layer. Analogue 2 orders as a ferrimagnet at 27(±1) K with a coercive field and remanent magnetization of 1140 Oe and 22 800 emuOe mol?1, respectively, and the magnetization approaches saturation of 49 800 emuOe mol?1 at 90 000 Oe. In contrast, the bonding via bridging cyanides between the ferrimagnetic layers leads to antiferromagnetic coupling, and 3D structured 1 has a different magnetic behavior to 2 . Thus, 1 is a Prussian blue analogue with an antiferromagnetic ground state [Tc=27 K from d(χT)/dT].  相似文献   

13.
Synthesis, Structures, NMR and EPR Investigations on Transition Metal Complexes of monofluorosubstituted Acylselenourea Ligands The syntheses and the structures of the ligand N, N‐diethyl‐N′‐(2‐fluoro)benzoylselenourea HEt2mfbsu and the complexes [Ni(Et2mfbsu)2] and [Zn(Et2mfbsu)2] as well as of the ligand N, N‐diisobutyl‐N′‐(2‐fluoro)benzoylselenourea HBui2mfbsu and the complexes [NiII(Bui2mfbsu)2] and [PdII(Bui2mfbsu)2] are reported. The ligands coordinate bidendately forming bischelates. The PdII and NiII complexes are cis coordinated; in [ZnII(Et2mfbsu)2] the ligands are tetrahedrally arranged. The structure of the also obtained bis[diisobutylamino‐(2‐fluorobenzoylimino)methyl]diselenide is reported. The CuII complexes of both selenourea ligands could not be isolated. They were obtained as oils. Their EPR spectra, however, confirm the presence of CuII bischelates unambiguously. Detailed NMR investigations ‐ 1H‐, 13C‐ and 19F‐COSY, HMBC and HMQC ‐ on [MII(Et2mfbsu)2] (M = NiII, ZnII) allow an exact assignment of all signals to the magnetically active nuclei of the complexes.  相似文献   

14.
The synthesis of tetranuclear gold complexes, a structurally unprecedented octanuclear complex with a planar [AuI8] core, and pentanuclear [AuI4MI] (M=Cu, Ag) complexes is presented. The linear [AuI4] complex undergoes C?H functionalization of carbonyl compounds under mild reaction conditions. In addition, [AuI4AgI] catalyzes the carbonylation of primary amines to form ureas under homogeneous conditions with efficiencies higher than those achieved by gold nanoparticles.  相似文献   

15.
The hexadentate ligand all‐cis‐N1,N2‐bis(2,4,6‐trihydroxy‐3,5‐diaminocyclohexyl)ethane‐1,2‐diamine (Le) was synthesized in five steps with an overall yield of 39 % by using [Ni(taci)2]SO4?4 H2O as starting material (taci=1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol). Crystal structures of [Na0.5(H6Le)](BiCl6)2Cl0.5?4 H2O ( 1 ), [Ni(Le)]‐ Cl2?5 H2O ( 2 ), [Cu(Le)](ClO4)2?H2O ( 3 ), [Zn(Le)]CO3?7 H2O ( 4 ), [Co(Le)](ClO4)3 ( 5 c ), and [Ga(H?2Le)]‐ NO3?2 H2O ( 6 ) are reported. The Na complex 1 exhibited a chain structure with the Na+ cations bonded to three hydroxy groups of one taci subunit of the fully protonated H6(Le)6+ ligand. In 2 , 3 , 4 , and 5 c , a mononuclear hexaamine coordination was found. In the Ga complex 6 , a mononuclear hexadentate coordination was also observed, but the metal binding occurred through four amino groups and two alkoxo groups of the doubly deprotonated H?2(Le)2?. The steric strain within the molecular framework of various M(Le) isomers was analyzed by means of molecular mechanics calculations. The formation of complexes of Le with MnII, CuII, ZnII, and CdII was investigated in aqueous solution by using potentiometric and spectrophotometric titration experiments. Extended equilibrium systems comprising a large number of species were observed, such as [M(Le)]2+, protonated complexes [MHz(Le)]2+z and oligonuclear aggregates. The pKa values of H6(Le)6+ (25 °C, μ=0.10 m ) were found to be 2.99, 5.63, 6.72, 7.38, 8.37, and 9.07, and the determined formation constants (log β) of [M(Le)]2+ were 6.13(3) (MnII), 20.11(2) (CuII), 13.60(2) (ZnII), and 10.43(2) (CdII). The redox potentials (vs. NHE) of the [M(Le)]3+/2+ couples were elucidated for Co (?0.38 V) and Ni (+0.90 V) by cyclic voltammetry.  相似文献   

16.
Copper and Silver Clusters with Bridging Imido and Amido Ligands From the reactions of copper and silver chloride with tertiary phosphines and lithiated aniline the compounds [{Li(dme)3}4][Cu18(NPh)11] ( 1 ) and [Ag6(NHPh)4(PnPr3)6Cl2] ( 2 ) were obtained. The structure of the anion in 1 is closely related to the structures of the reported clusters [Cu12(NPh)8]4– [1] and [Cu24(NPh)14]4– [2]: 1 represents the third phenyl imido bridged copper cluster which contains parallel Cu3‐ and Cu6‐planes. The dimeric compound 2 consists of two Ag3 units with bridging phenyl amido ligands. Two chloride and six phosphine ligands complete the ligand sphere and shield the metal core effectively.  相似文献   

17.
Macrocyclic propargyl acetates containing a furan ring were prepared by using a CrCl2‐promoted reaction. In the presence of either a AuI or AuIII catalyst, a tandem 3,3‐rearrangement/transannular [4+3] cycloaddition reaction occurred to give propargyl acetates that are regio‐ and diastereospecific. The regiochemistry of the product is controlled by the position of the acetoxy group in the starting material and the stereochemistry of the reaction depends on the ring size.  相似文献   

18.
Complexes of type [LAuCl] (L=phosphine, phosphite, NHC and others) are widely employed in homogeneous catalysis, however, they are usually inactive as such and must be used jointly with a halide scavenger. To date, this role has mostly been entrusted to silver salts (AgSbF6, AgPF6, AgBF4, AgOTf, etc.). However, silver salts can be the source of deactivation processes or side reactions, so it is sometimes advisable to use silver‐free cationic gold complexes, which can be difficult to synthesize and to handle compared with the more robust chloride. We show in this study that various Lewis acids of the transition and main group metal families are expedient substitutes to silver salts. We have tested CuI, CuII, ZnII, InIII, SiIV, BiIII, and other salts in a variety of typical AuI‐catalyzed transformations, and the results have revealed that [LAuCl] can form active species in their presence.  相似文献   

19.
Novel Gold Selenium Complexes: Syntheses and Structures of [Au10Se4(dpppe)4]Br2, [Au2Se(dppbe)], [(Au3Se)2(dppbp)3]Cl2, and [Au34Se14(tpep)6(tpepSe)2]Cl6 The reaction of gold phosphine complexes [(AuX)(PR3)] (X= halogen; R = org. group) with Se(SiMe3)2 yield to new chalcogeno bridged gold complexes. Especially within the use of polydentate phosphine ligands cluster complexes like [Au10Se4(dpppe)4]Br2 ( 1 ) (dpppe = 1, 5‐Bis(diphenylphosphino)pentane), [Au2Se(dppbe)] ( 2 ) (1, 4‐Bis(diphenylphosphino)benzene), [(Au3Se)2(dppbp)3]Cl2 ( 3 ) (dppbp = 4, 4′‐Bis‐diphenylphosphino)biphenyl) und [Au34Se14(tpep)6(tpepSe)2]Cl6 ( 4 ) (tpep = 1, 1, 1‐Tris(diphenylphosphinoethyl)phosphine, tpepSe = 1, 1‐Bis(diphenylphosphinoethyl)‐1‐(diphenylselenophosphinoethylphosphine) could be isolated and their structures could be determined by X‐ray diffraction. ( 1: Space group P1 (No. 2), Z = 2, a = 1642.1(11), b = 1713.0(9), c = 2554.0(16) pm, α = 80.41(3)°, β = 76.80(4)°, γ = 80.92(4)°; 2: Space group P21/n (No. 14), Z = 4, a = 947.3(2), b = 1494.9(3), c = 2179.6(7) pm, β = 99.99(3)°; 3: Space group P21/c (No. 14), Z = 8, a = 2939.9(6), b = 3068.4(6), c = 3114.5(6) pm, β = 109.64(3)°; 4: Space group P1 (No. 2), Z = 1, a = 2013.7(4), b = 2420.6(5), c = 2462.5(5) pm, α = 77.20(3), β = 74.92(3), γ = 87.80(3)°).  相似文献   

20.
Synthesis, Structure and EPR Investigations of binuclear Bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato)) Complexes of CuII, NiII, ZnII, CdII and PdII The synthesis of binuclear CuII‐, NiII‐, ZnII‐, CdII‐ and PdII‐complexes of the quadridentate ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and the crystal structures of the CuII‐ and NiII‐complexes are reported. The CuII‐complex crystallizes in two polymorphic modifications: triclinic, (Z = 1) and monoclinic, P21/c (Z = 2). The NiII‐complex was found to be isostructural with the triclinic modification of the copper complex. The also prepared PdII‐, ZnII‐ and CdII‐complexes could not be characterized by X‐ray analysis. However, EPR studies of diamagnetically diluted CuII/PdII‐ and CuII/ZnII‐powders show axially‐symmetric g and A Cu tensors suggesting a nearly planar co‐ordination within the binuclear host complexes. Diamagnetically diluted CuII/CdII powder samples could not be prepared. In the EPR spectra of the pure binuclear CuII‐complex exchange‐coupled CuII‐CuII pairs were observed. According to the large CuII‐CuII distance of about 7,50Å a small fine structure parameter D = 26·10?4 cm?1 is observed; T‐dependent EPR measurements down to 5 K reveal small antiferromagnetic interactions for the CuII‐CuII dimer. Besides of the dimer in the EPR spectra the signals of a mononuclear CuII species are observed whose concentration is T‐dependent. This observation can be explained assuming an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号