首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Na0.74Ta3O6, a Low‐Valent Oxotantalate with Multiple Ta–Ta Bonds The title compound was prepared in a sealed tantalum tube through the reaction of Ta2O5, tantalum and Na2CO3 in a NaCl flux at 1570 K within 5 d. The crystal structure of Na0.74Ta3O6 (a = 713.5(1), b = 1027.4(2), c = 639.9(1) pm, Immm, Z = 4) was determined by single crystal X‐ray means. The structure is isomorphous with NaNb3O5F [1]. The characteristic structural units are triply bonded Ta12 dumb‐bells with eight square‐prismatically co‐ordinated O ligands. Four Ta2, each octahedrally surrounded by O atoms, are side‐on bonded weakly to the binuclear Ta2O8 complex, thus forming a Ta6 propellane‐like cluster. The lattice parameters of three additional MxTa3O6 phases, M = Li, Mn, and Yb, are reported.  相似文献   

2.
Synthesis, Structure, and Properties of the Tantalum‐rich Silicide Chalcogenides Ta15Si2QxTe10–x (Q = S, Se) The quaternary tantalum silicide chalcogenides Ta15Si2QxTe10–x (Q = S, Se) are accessible from proper, compacted mixtures of the respective dichalcogenides, silicon and elemental tantalum at 1770 K in sealed molybdenum tubes. The structures were determined from the strongest X‐ray intensities of fibrous crystals with cross sections of about 3 μm and confirmed by fitting the profile of single phase X‐ray diffractograms. The phases Ta15Si2S3.5Te6.5 and Ta15Si2Se3.5Te6.5 crystallize in the monoclinic space group C2/m with two formula units per unit cell, a = 2393.7(1) pm, b = 350.08(2) pm, c = 1601.2(1) pm, β = 124.700(4)°, and a = 2461.3(2) pm, b = 351.70(2) pm, c = 1601.7(1) pm, β = 124.363(5)°, respectively. Tri‐capped trigonal prismatic Ta9Si clusters stabilized by encapsulated Si atoms can be seen as the characteristic unit of the structure. The clusters are fused into twin columns which are connected by additional Ta atoms, thus forming corrugated layers. The remaining valences at the surfaces of the layered Ta–Si substructure are saturated by those of chalcogen atoms which are coordinated only from one side by three, four or five Ta atoms. Few bridging covalent Ta–S–Ta and Ta–Se–Ta bonds and, otherwise, dispersive interactions between the Q atoms hold these nearly one nanometer wide slabs together. The phases are moderate metallic conductors. There is no evidence for any electronic instability within 10–310 K in spite of the high anisotropy of the structures.  相似文献   

3.
MAl2Ta35O70 (M = Na, K, Rb), Low-Valent Oxotantalates with Discrete Cuboctahedral Ta6O12 Clusters The title compounds were prepared by reducing Ta2O5 with tantalum and aluminium in the presence of alkali metal carbonates at 1650 K. NaAl2Ta35O70 was characterized by means of a single crystal X-ray structure determination: space group P 3, lattice parameters a = 780.15(7) pm, c = 2621.7(8) pm, Z = 1, 167 variables, RF = 0.048. The structure can be described in terms of a close packing of oxide ions with specific defects. The sequence of the layers is hhcchchcchh. The characteristic structural units are Ta6O12 clusters being substantially stabilized by Ta–Ta bonding (dTa–Ta = 279.3–283.3 pm, 14 electrons per cluster). The sodium cations occupy acentrically and statistically half of the anti-cuboctahedral sites. The compounds are semiconductors with band gaps Ea of 0.2 to 0.3 eV.  相似文献   

4.
Tantalum Cluster in an Oxidic Matrix – Synthesis and Structures of Mixed-Valence Oxotantalates M2–δTa15O32 (M = K, Rb (δ = 0); M = Sr (δ = 0.15), Ba (δ = 0.12)) The mixed-valent oxides Sr1.85Ta15O32 ( 1 ), Ba1.88Ta15O32 ( 2 ), K2Ta15O32 ( 3 ), Rb2Ta15O32 ( 4 ) were prepared from appropriate mixtures of Ta2O5, tantalum and the corresponding carbonate at 1520–1670 K in sealed tantalum tubes. According to X-ray single crystal structure analyses the oxides crystallize in the space group R3¯, Z = 1. The lattice parameters in the hexagonal setting are a = 777.36(11), c = 3516.2(7) pm for 1 , a = 778.87(11), c = 3548.1(7) pm for 2 , a = 780.7(2), c = 3573.1(11) pm for 3 , and a = 781.90(11), c = 3593.0(7) pm for 4 . The oxide ions form a defect dense packing with the layer sequence chhhh. Anti-cuboctahedral sites are completely occupied by the alkali metal cations. The alkaline earth cations occupy 92 to 94% of such sites; they are displaced from the centres. Smaller voids are located in the centres of the cuboctahedral Ta6O12 clusters forming the characteristic structural unit of these low-valent oxotantalates. In case of 3 and 4 the clusters have 13 electrons, in case of 1 and 2 they have close to 15 electrons available for Ta–Ta-bonding. Moreover, the structures of the alkali and alkaline earth metal compounds differ notably with respect to the spectrum of Ta–O and Ta–Ta distances in the Ta3O13 octahedra triples forming another characteristic structural unit for these oxides. Such differences are traced back to distinct local charge balances for the uni- and divalent cations. The oxides 2 , 3 are semiconductors with band gaps ranging from 130 to 360 meV.  相似文献   

5.
Potassium‐containing zirconium(IV)/titanium(IV) tantalum(V) oxides, K3TiTa7O21 ( 1 ) and K3ZrTa7O21 ( 2 ), of K3Nb8O21‐type of compounds are afforded from potassium‐molybdate flux. Both compounds crystallize in the hexagonal space group P63/mcm (no. 193) with a = 908.69(2), c = 1202.83(7) pm and c/a = 1.324 (Z = 2) for 1 and a = 913.30(3), c = 1219.21(6) pm and c/a = 1.335 (Z = 2) for 2 , respectively. The Structural motif of [MTa7O21]3– (M = Ti4+ or Zr4+) consists of edge‐shared (M,Ta)6O24‐units that are similar to corner‐sharing Ta6O27 units of synthetic soro‐silicate K3Ta3Si2O13 and double borate K3Ta3B2O12. The solid state bandgap measurements revealed that calculated values (3.26 eV for K3TiTa7O21 and 3.14 eV for K3ZrTa7O21) are dependent on aperture of Ta–O–Ta bond angle as it was previously shown for perovskite‐type tantalate photocatalysts.  相似文献   

6.
The Metal‐rich Layer Structure of Ta6STe3 Ta6S1+xTe3–x was prepared from an appropriate mixture of 2 H–Ta1.3S2, TaTe2, and Ta in a fused tantalum tube at 1273 K within 3 d. The results of a X‐ray single crystal structure analysis for a phase near the Te‐rich limit of the homogeneity range are reported. Ta6S1.00Te3.00(1) crystallizes in the triclinic space group P1, a = 993.14(8) pm, b = 1032.18(8) pm, c = 1378.78(11) pm, α = 79.32(1)°, β = 81.36(1)°, γ = 85.74(1)°, Z = 6, Pearson symbol aP60, 6048 Io > 2σ (Io), 286 variables, wR2 = 0.067. The metal‐rich layer structure of Ta6STe3 comprises distorted icosahedral Ta13 clusters and related deltahedral cluster fragments complemented by chalcogen atoms. The centred clusters consist of 11, 12, 13, 14, or 16 atoms. They interpenetrate into lamellae in which the tantalum and chalcogen atoms are spatially segregated according to [Q–Ta3–Q]. The signature of the structure is a lenticular heptagonal antiprismatic Ta30 cluster which seems to be excised from the pentagonal antiprismatic columnar structure of Ta6S. The Ta30 clusters and distorted icosahedral Ta13 clusters are connected and fused into puckered layers. The rest of the tantalum valences are used for heteronuclear bonding. The chalcogen atoms having three to six next tantalum atoms coat the corrugated, tetrahedrally close‐packed layers. Ta6STe3 is a moderate metallic conductor (ρ293 K = 3 × 10–4 Ωcm) exhibiting typical temperature independent paramagnetic properties.  相似文献   

7.
Alkali niobates and tantalates are currently important lead‐free functional oxides. The formation and decomposition energetics of potassium tantalum oxide compounds (K2O?Ta2O5) were measured by high‐temperature oxide melt solution calorimetry. The enthalpies of formation from oxides of KTaO3 perovskite and defect pyrochlores with K/Ta ratio of less than 1 stoichiometry—K0.873Ta2.226O6, K1.128Ta2.175O6, and K1.291Ta2.142O6—were experimentally determined, and the values are (?203.63±2.92) kJ mol?1 for KTaO3 perovskite, and (?339.54±5.03) kJ mol?1, (?369.71±4.84) kJ mol?1, and (?364.78±4.24) kJ mol?1, respectively, for non‐stoichiometric pyrochlores. That of stoichiometric defect K2Ta2O6 pyrochlore, by extrapolation, is (?409.87±6.89) kJ mol?1. Thus, the enthalpy of the stoichiometric pyrochlore and perovskite at K/Ta=1 stoichiometry are equal in energy within experimental error. By providing data on the thermodynamic stability of each phase, this work supplies knowledge on the phase‐formation process and phase stability within the K2O?Ta2O5 system, thus assisting in the synthesis of materials with reproducible properties based on controlled processing. Additionally, the relation of stoichiometric and non‐stoichiometric pyrochlore with perovskite structure in potassium tantalum oxide system is discussed.  相似文献   

8.
Yellow single crystals of Eu4OI6 were grown from fluxes in Ta ampoules and structurally characterized by X‐ray diffraction. Eu4OI6 crystallizes in a hexagonal system and is isotypic with the corresponding chloride and bromide compounds. The O atom and one Eu atom lie on sites with 3m symmetry; the other Eu atom and the two unique I atoms are at sites with m symmetry. The structure is characterized by O‐centered tetrahedra of divalent europium cations [Eu—O = 2.391 (15) and 2.416 (5) Å, and mean Eu—Eu = 3.94 Å] and hexagonal channels along [001] filled with iodide anions.  相似文献   

9.
The binary silicides Eu5Si3 and Yb3Si5 were prepared from the elements in sealed tantalum tubes and their crystal structures were determined from single crystal X-ray data: I4/mcm, a = 791.88(7) pm, c = 1532.2(2) pm, Z = 4, wR2 = 0.0545, 600 F2 values, 16 variables for Eu5Si3 (Cr5B3-type) and P62m, a = 650.8(2) pm, c = 409.2(1) pm, Z = 1, wR2 = 0.0427, 375 F2 values, 12 variables for Yb3Si5 (Th3Pd5 type). The new silicide Eu5Si3 contains isolated silicon atoms and silicon pairs with a Si–Si distance of 242.4 pm. This silicide may be described as a Zintl phase with the formula [5 Eu2+]10+[Si]4–[Si2]6–. The silicon atoms in Yb3Si5 form a two-dimensional planar network with two-connected and three-connected silicon atoms. According to the Zintl-Klemm concept the formula of homogeneous mixed-valent Yb3Si5 may to a first approximation be written as [3 Yb]8+[2 Si]2–[3 Si2–]6–. Magnetic susceptibility investigations of Eu5Si3 show Curie-Weiss behaviour above 100 K with a magnetic moment of 7.85(5) μB which is close to the free ion value of 7.94 μB for Eu2+. Chemical bonding in Eu5Si3 and Yb3Si5 was investigated by semi-empirical band structure calculations using an extended Hückel hamiltonian. The strongest bonding interactions are found for the Si–Si contacts followed by Eu–Si and Yb–Si, respectively. The main bonding characteristics in Eu5Si3 are antibonding Si12-π* and bonding Eu–Si1 states at the Fermi level. The same holds true for the silicon polyanion in Yb3Si5.  相似文献   

10.
The Oxochlorotantalates (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2, (PPh4)2[Ta2OCl10] · 2 CH3CN, and (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 was obtained from a reaction of tantalum pentachloride, K2S5 and 18-crwon-6 in dichlormethane. According to its crystal structure analysis it is tetragonal (space group I 4 2d) and contains [Ta4O6Cl12]4– ions that have an adamantane-like Ta4O6 skeleton. Each K+ ion is coordinated by the oxygen atoms of the crown ether molecule from one side and with three Cl atoms of one [Ta4O6Cl12]4– ion from the opposite side. (PPh4)2[Ta2OCl10] · 2 CH3CN was a product from PPh4Cl and TaCl5 in acetonitrile in the presence of Na2S4. Its crystals are monoclinic (space group P21/c) and contain centrosymmetric [Ta2OCl10]2– ions having a linear Ta–O–Ta grouping with short bonds (Ta–O 189 pm). TaCl5 and H2S formed a solid substance (TaSCl3) from which a small amount of (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2 was obtained by the reaction with PPh4Cl in CH2Cl2. The anions in the monoclinic crystals (space group P21/n) consist of two Ta2OCl9 units which are joined by chloro bridges; each Ta2OCl9 unit has a nearly linear Ta–O–Ta group with differing bond lengths (179 and 202 pm). The oxygen in the compounds probably was introduced by traces of water in the crown ether, acetonitrile or H2S, respectively.  相似文献   

11.
Transition Metal Peroxofluoro Complexes. III. Preparation, Crystal Structure, and Vibrational Spectra of K6Ta3(O2)3OF13 · H2O Containing a m?-Oxo-diperoxo-octafluoroditantalate(V) Anion K6Ta3(O2)3OF13 · H2O has been prepared from solution and his crystal structure was determined by X-ray single crystal investigation: Space group Pnma, lattice constants a = 1 653.6 pm, b = 883.5 pm, c = 1 365.8 pm, Z = 4, R = 0.033. The compound yields [Ta(O2)F5]2? groups as well as m?-oxo-bridged [Ta2O(O2)2F8]4? anions with very diffrent O? O distances within the peroxo groups (139 pm vs. 164 and 175 pm) correlating well with the i.r. and Raman spectra. The different bonding in connection with an oxo-bridge is discussed.  相似文献   

12.
Eu5F[SiO4]3 and Yb5S[SiO4]3: Mixed‐Valent Lanthanoid Silicates with Apatite‐Type of Structure By the reaction of Eu, EuF3, Eu2O3 with SiO2 in evacuated gold ampoules, using NaF as flux, at a temperature of 1000 °C for ten hours, dark‐red, platelet‐shaped single crystals of Eu5F[SiO4]3 are obtained. Similarly dark‐red, but pillar‐shaped single crystals of Yb5S[SiO4]3 are obtained by the reaction of Yb, Yb2O3 and S with SiO2 in the presence CsBr as flux in evacuated silica ampoules at 850 °C and an annealing time of seven days. Both compounds crystallize hexagonally (P63/m, Z = 2; Eu5F[SiO4]3: a = 954.79(9), c = 704.16(6) pm; Yb5S[SiO4]3: a = 972.36(9), c = 648.49(6) pm) in the case of Eu5F[SiO4]3 analogous to the mineral fluorapatite and for Yb5S[SiO4]3 as a bromapatite—type variety. The crystal structure containing isolated [SiO4]4— tetrahedra distinguishes two rare‐earth cation positions with coordination numbers of nine (M1) and seven (M2), in which the position M1 of the europium fluoride silicate is almost exclusively occupied by Eu2+ cations, whereas in ytterbium sulfide silicate it contains di‐ and trivalent Yb cations in the ratio 1 : 1. In both cases, however, the M2 position is only populated with M3+.  相似文献   

13.
The Reactions of Europium and Yttrium with N‐Iodinetriphenylphosphoraneimine. Crystal Structures of [EuI2(DME)3], [Eu2I(NPPh3)5(DME)] and [Y2I(NPPh3)4(THF)4]+I3 When treated with ultrasound, the reaction of europium metal with INPPh3 in 1,2‐dimethoxyethane (DME) leads to the complexes [EuI2(DME)3] ( 1 ) and [Eu2I(NPPh3)5(DME)] ( 2 ) which are separated from each other by fractional crystallization. On the other hand, the reaction of yttrium metal with INPPh3 under similar conditions in THF gives the ionic phosphoraneiminato complex [Y2I(NPPh3)4(THF)4]+I3 ( 3 ). All complexes are characterized by crystal structure determinations. 1 : Space group P21, Z = 2, lattice dimensions at 188 K: a = 848.9(1); b = 1059.4(1); c = 1227.9(1) pm; β = 93.793(6)°; R = 0.0246. In the molecular structure of 1 the europium atom is eightfold coordinated with a bond angle I–Eu–I of 158.51°. 2 · 2 DME: Space group P1, Z = 2, lattice dimensions at 193 K: a = 1405.5(1); b = 1652.2(2); c = 2203.7(2) pm; α = 89.404(11)°; β = 72.958(11)°; γ = 78.657(11)°; R = 0.0391. In 2 the europium atoms are linked by the μ‐N‐atoms of two (NPPh3) groups to form a planar Eu2N2 four‐membered ring. One of the Eu atoms is terminally coordinated by the N atoms of two (NPPh3) groups, thus achieving a distorted tetrahedral surrounding. The second Eu atom is coordinated by the N atom of one (NPPh3) group, by the terminally bounded iodine atom and by the oxygen atoms of the DME chelate, thus achieving a distorted octahedral surrounding. 3 · 61/2 THF: Space group P1, Z = 2, lattice dimensions at 103 K: a = 1739.7(2); b = 1770.1(2); c = 2153.8(3) pm; α = 74.929(15)°; β = 84.223(14)°; γ = 64.612(12)°; R = 0.0638. In the cation [Y2I(NPPh3)4(THF)4]+ of 3 the yttrium atoms are linked by the μ‐N atoms of two (NPPh3) groups as well as by the μ‐I atom. One (NPPh3) ligand and two THF molecules complete the distorted octahedral coordination at each yttrium atom.  相似文献   

14.
Rubidium und Caesium Compounds with the Isopolyanion [Ta6O19]8– – Synthesis, Crystal Structures, Thermogravimetric and Vibrational Spectrocopic Analysis of the Oxotantalates A8[Ta6O19] · n H2O (A = Rb, Cs; n = 0, 4, 14) The compounds A8[Ta6O19] · n H2O (A = Rb, Cs; n = 0, 4, 14) contain the isopoly anion [Ta6O19]8–, which consists of six [TaO6] octahedra connected via corners to form a large octahedron. They transform into each other by reversible hydratation/dehydratation processes, as shown from thermoanalytic measurements (TG/DSC), and show also structural similarities. Cs8[Ta6O19] (tetragonal, I4/m, a = 985.9(1) pm, c = 1403.3(1) pm, Z = 2), the isotypic phases A8[Ta6O19] · 14 H2O (A = Rb/Cs; monoclinic, P21/n, a = 1031.30(6)/1055.4(1) pm, b = 1590.72(9)/1614.9(6) pm, c = 1150.43(6)/1171.4(1) pm, β = 100.060(1)/99.97(2)°, Z = 2) and Rb8[Ta6O19] · 4 H2O (monoclinic, C2/c, a = 1216.9(4) pm, b = 1459.2(5) pm, c = 1414.7(4) pm, β = 90.734(6)°, Z = 4) have been characterised on the basis of single crystal x‐ray data. Furthermore the RAMAN spectra allow a detailled comparison of the hexatantalate ions in the four compounds.  相似文献   

15.
A new quaternary compound in the Ca–Eu–Sn–O system, namely calcium europium tin hepta­oxide, Ca1.5Eu3Sn0.5O7, was prepared by solid‐state reaction at 2073 K. All atoms in the structure are on 4i special positions (on mirrors) in space group C2/m. Ca/Eu sites are situated within two O octa­hedra and within two sevenfold coordination sites surrounded by O‐capped trigonal prisms. A Ca/Eu/Sn site is coordinated by five O atoms. The structural formula can be represented as (Ca0.28Eu0.72)(Ca0.16Eu0.84)(Ca0.46Eu0.54)(Ca0.28Eu0.72)(Ca0.32Eu0.18Sn0.50)O7. The crystal structure is a new type and is related to the structure of B‐form Eu2O3.  相似文献   

16.
The cubic inverse Perovskites (Eu3O)In and (Eu3O)Sn were prepared from the metals and Eu2O3 or SnO2, respectively. For (Eu3O)In the crystal structure analysis was performed on single crystal X‐ray diffraction data (space group , a = 512.79(3) pm, Z = 1, Rgt(F) = 0.022, wR(F2) = 0.044). The data indicated full occupancy on all sites and a fully ordered structure. According to magnetic susceptibility measurements and X‐ray absorption spectroscopic data at the Eu LIII edge both compounds contain europium in the 4f7 (Eu2+) electronic state. (Eu3O)In orders ferromagnetically at 185(5) K, (Eu3O)Sn shows antiferromagnetic order at 31.4(2) K. Both compounds behave as metallic conductors in electrical resistivity measurements. However, (Eu3O)In may be classified a metal, while (Eu3O)Sn is more likely a heavily doped degenerated semiconductor or semimetal according to the absolute values of the resistivity.  相似文献   

17.
The novel compounds Sr13NbAs11 and Eu13NbAs11 have been synthesized from SrAs, Eu5As4, Sr, Nb and As in niobium ampoules at 1173–1273 K. The tetragonal tI 200 phases are defect variants of the Ca14AlSb11 structure (space group I41/acd (no. 142); Sr13□NbAs11: a = 1649.8(2) and c = 2214.1(3); Eu13□NbAs11: a = 1632.9(8) and c = 2197.3(8) pm; Z = 8). The structures are built from the cations Sr2+, and Eu2+, respectively, and from the anions [NbAs4]7?, As3?, and the linear polyanion [As3]7?. This polyanion (isosteric to I3?) is asymmetric with d(As? As) = 273.0 and 346.0 pm (Sr) and 274.7 and 335.6 pm (Eu), respectively. The bond lengths in the tetrahedral anions are d(Nb? As) = 250.8 and 251.1 pm. The complete structural arrangement is related to that of Cu2O by forming two interpenetrating networks. The oxygen atoms are substituted by niobium centered As4 tetrahedra, and the Cu atoms are substituted by As6 octahedra (centered by Sr, Eu). The central As atoms of the polyanions connect the nets. Both As networks are enveloped by the remaining cations forming cubes, tetragonal antiprisms and capped trigonal prisms.  相似文献   

18.
Single crystals of Eu(ClO4)3 have been obtained by slow dehydration of a hydrous product prepared by the reaction of Eu2O3 with HClO4. The crystal structure (hexagonal, P63/m, Z = 2, a = 924.96(9), c = 574.86(8) pm) consists of tricapped trigonal [EuO9] prisms and [ClO4] tetrahedra. One of the oxygen atoms in the ClO4 group does not coordinate to Eu3+ and points towards the empty channel which runs in the direction [001].  相似文献   

19.
New ternary gallide EuZnGa was synthesized by reaction of the elements in a sealed tantalum tube at 1320 K and subsequent annealing at 970 K for seven days. EuZnGa was investigated by X‐ray diffraction on both powders and single crystals. Its structure was refined from single crystal diffractometer data: KHg2 type, space group Imma, a = 461.7(2), b = 761.4(3), c = 777.0(3) pm, R = 0.041 for 486 structure factors and 13 variables. The zinc and gallium atoms statistically occupy the mercury position of the KHg2 type of structure. No long‐range ordering between the zinc and gallium atoms could be detected from the X‐ray data. Magnetic susceptibility measurements show Curie‐Weiss behavior above 50 K with a magnetic moment of μexp = 7.86(5) μB/Eu and θ = 17(2) K, suggesting divalent europium. Low‐field, low‐temperature susceptibility measurements indicate cluster glass behavior (mictomagnetism) with a freezing temperature of 24(2) K. Magnetization measurements show a magnetic moment of 4.9(1) μB/Eu at 2 K and a magnetic flux density of 5.5 T. Electrical resistivity data indicate metallic behavior. 151Eu Mössbauer spectroscopic measurements show onset of magnetic hyperfine splitting at ≤ 17.0 K. Down to the temperature of 4.2 K the spectra reflect magnetic relaxation effects suggesting the presence of a substantial extent of disordering. This observation is consistent with the cluster glass behavior as evident from the magnetic susceptibility data and may be a consequence of the presence of multiple local Eu sites as expected from the statistical Zn and Ga distribution over the corresponding sites in the KHg2 structure.  相似文献   

20.
The title compounds and their deuterides have been prepared by solid-state and solid-gas reactions from the elements and investigated by X-ray and neutron powder diffraction as a function of temperature. At room temperature they crystallize with an anion-deficient cubic K2PtCl6-type structure (space group ) in which five hydrogen (deuterium) atoms surround iridium randomly on six octahedral sites with average bond distances of Ir-D=169-171 pm. At low temperature they undergo a tetragonal deformation (space group I4/mmm) to the partially ordered Sr2IrD5 (T=4.2K)-type structure in which four hydrogen (deuterium) atoms occupy planar sites with full occupancy (Ir-D=166-170 pm) and two hydrogen (deuterium) atoms axial sites (Ir-D=174-181 pm) with ∼50% occupancy, i.e., the data are consistent with a mixture of square-pyramidal [IrD5]4− complexes pointing in two opposite directions. The transitions occur at ∼240 K (Eu0.5Ca1.5IrD5, Eu0.5Sr1.5IrD5), ∼210 K (EuSrIrD5), ∼200 K (EuCaIrD5, Eu2IrD5), and are presumably of first order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号