首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis, Structures, EPR and ENDOR Investigations on Transition Metal Complexes of N, N‐diisobutyl‐N′‐(2, 6‐difluoro)benzoyl selenourea The synthesis and the structures of the NiII and PdII complexes of the ligand N, N‐diisobutyl‐N′‐(2, 6‐difluoro)benzoylselenourea HBui2dfbsu are reported. The ligands coordinate bidentately forming bis‐chelates. The structure of the ligand could not be obtained, however, the structure of its O‐ethyl ester will be reported. Attempts to prepare the CuII complex result only in the formation of oily products. However, the CuII complex could be incorporated into the corresponding NiII and PdII compounds. From this diamagnetically diluted powder and single‐crystal samples were obtained being suitable for EPR‐ENDOR measurements. We report X‐ and Q‐band EPR investigations on the systems [Cu/Ni(Bui2dfbsu)2] and [Cu/Pd(Bui2dfbsu)2] as well as a single‐crystal X‐band EPR study for [Cu/Ni(Bui2dfbsu)2]. The obtained 63, 65Cu and 77Se hyperfine structure tensors allow a determination of the spin‐density distribution within the first coordination sphere. In addition, orientation selective 19F Q‐band pulse ENDOR investigations on powder‐samples of [Cu/Ni(Bui2dfbsu)2] have been performed. The hyperfine structure tensors of two intramolecular 19F atoms could be determined. According to the small 19F couplings only a vanishingly small spin‐density of < 1 % was obtained for these 19F atoms.  相似文献   

2.
Synthesis and Structures of the Zinc‐ and Cadmium‐N‐Acylthiourea Complexes The synthesis and crystal structures of the N,N‐Diisobutyl‐N′‐benzoylthiourea complexes [Zn(Bui2btu)2] and [Cd(Bui2btu)2(HBui2btu)] are reported. The complexes of ZnII and CdII have different molecular structures. Whereas ZnII forms a bischelate with tetrahedral coordination, three ligands coordinate in a trigonal‐bipyramidal manner in the CdII complex.  相似文献   

3.
The synthesis and the structures of (i) the ligand N,N‐Diethyl‐N′‐3,5‐di(trifluoromethyl)benzoylthiourea HEt2dtfmbtu and (ii) the NiII and PdII complexes of HEt2dtfmbtu are reported. The ligand coordinates bidendate forming bis chelates. The NiII and the PdII complexes are isostructural. The also prepared CuII complex could not be characterized by X‐ray analysis. However, the preparation of diamagnetically diluted powders Cu/Ni(Et2dtfmbtu)2 and Cu/Pd(Et2dtfmbtu)2 suitable for EPR studies was successful. The EPR spectra of the Cu/Ni and Cu/Pd systems show noticeable differences for the symmetry of the CuS2O2 unit in both complexes: the Cu/Pd system is characterized by axially‐symmetric g< and A cu tensors; for the Cu/Ni system g and A Cu have rhombic symmetry. EPR studies on frozen solutions of the CuII complex show the presence of a CuII‐CuII dimer which is the first observed for CuII acylthioureato complexes up to now. The parameters of the fine structure tensor were used for the estimation of the CuII‐CuII distance.  相似文献   

4.
A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4′‐bis(tert‐butyl)‐2, 2′‐bipyridine (tBu2bpy) and S2 =1, 2‐dithiooxalate, (dto), 1, 2‐dithiosquarate, (dtsq), maleonitrile‐1, 2‐dithiolate, or 1, 2‐dicyanoethene‐1, 2‐dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi‐occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X‐ray structure analysis to prove the coordination geometry. The complex crystallizes in a square‐planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) Å, b = 18.266(2) Å, c = 12.6566(12) Å, β = 112.095(7)°. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.  相似文献   

5.
The title complex of [Ni2(µ‐Sal)4(Dena)2]H2O, [( µ‐tetrakissalicylato‐κ‐O,O)(bis‐N,N‐diethylnicotinamide‐κ‐N)(binickel(II))]hydrate, C48H52Ni2N4O16, has been synthesized and explained as structural using some elemental analysis, FT‐IR spectra, UV‐Vis reflectance, magnetic measurements, thermal analysis and x‐ray diffraction methods. The analysis results showed that the unit cell of complex includes two molecules NiII cation, four molecules salicylates as bridge and two molecules N,N‐diethylnicotinamide ligands, also there is one molecule hydrated aqua. The compound crystallizes in the monoclinic space group P21/c with the following unit‐cell parameters: a =13.6776(6) Å, b =10.5238(3) Å, c =21.8165(9), α=90.00°, β=126.546(3)°, γ=90.00º and Z=2. The compound [Ni2(µ‐Sal)4(Dena)2]H2O is a typical paddle‐wheel complex structure. Two NiII ions are bridged by four salicylate ligands (O2, O2i, O3, O3i, O5, O5i, O6 and O6i) using a µ‐COO? coordination mode [symmetry code: (i) 1‐x, 1‐y, 1‐z]. Each NiII also coordinates to one nitrogen atom (N1 and N1i) from one N,N‐diethylnicotinamide ligand molecule in the axial position. The complex has strong paramagnetic properties.  相似文献   

6.
Structure and magnetic properties of N‐diisopropoxyphosphorylthiobenzamide PhC(S)‐N(H)‐P(O)(OiPr)2 ( HLI ) and N‐diisopropoxyphosphoryl‐N′‐phenylthiocarbamide PhN(H)‐C(S)‐N(H)‐P(O)(OiPr)2 ( HLII ) complexes with the CoII cation of formulas [Co{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2] ( 2 ), [Co{PhC(S)‐N(H)‐P(O)(OiPr)2}2{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1a ) and [Co{PhC(S)‐N‐P(O)(OiPr)2}2}(2,2′‐bipy)] ( 3 ), [Co{PhC(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 4 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(2,2′‐bipy)] ( 5 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 6 ) were investigated. Paramagnetic shifts in the 1H NMR spectrum were observed for high‐spin CoII complexes with HLI,II , incorporating the S‐C‐N‐P‐O chelate moiety and two aromatic chelate ligands. Investigation of the thermal dependence of the magnetic susceptibility has shown that the extended materials 1‐2 and 6 show ferromagnetic exchange between distorted tetrahedral ( 1 , 2 ) or octahedral ( 1a , 6 ) metal atoms whereas 3 and 5 show antiferromagnetic properties. Compound 4 behaves as a spin‐canted ferromagnet, an antiferromagnetic ordering taking place below a critical temperature, Tc = 115 K. Complexes 1 and 1a were investigated by single crystal X‐ray diffraction. The cobalt(II) atom in complex 1 resides a distorted tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated ligands. Complex 1a has a tetragonal‐bipyramidal structure, Co(Oax)2(Oeq)2(Seq)2, and two neutral ligand molecules are coordinated in the axial positions through the oxygen atoms of the P=O groups. The base of the bipyramid is formed by two anionic ligands in the typical 1,5‐O,S coordination mode. The ligands are in a trans configuration.  相似文献   

7.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

8.
The reaction of [AuIII(mnt)2]? with (n‐Bu4N)[BH4] in acetone leads to the formation of [AuII(mnt)2]2?, which is the second stable mononuclear AuII complex characterized by X‐ray structure analysis. (n‐Bu4N)2[AuII(mnt)2] crystallizes triclinic, P (a = 904.24(5), b = 989.55(5), c = 1627.35(10) pm, α = 92.040(7), β = 94.937(7), γ = 107.220(6)°, Z = 1) with two molecules acetone per unit cell. The anion is planar. From EPR investigations using single crystals of (n‐Bu4N)2[AuII(mnt)2] the g tensor components were derived. Information about magnetic exchange interactions were obtained from line width analyses.  相似文献   

9.
The coordination geometry of the NiII atom in the title complex, poly[diazidobis[μ‐1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene‐κ2N4:N4′]nickel(II)], [Ni(N3)2(C12H12N6)2]n, is a distorted octahedron, in which the NiII atom lies on an inversion centre and is coordinated by four N atoms from the triazole rings of two symmetry‐related pairs of 1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene (bbtz) ligands and two N atoms from two symmetry‐related monodentate azide ligands. The NiII atoms are bridged by four bbtz ligands to form a two‐dimensional (4,4)‐network.  相似文献   

10.
Summary Anionic complexes [UO2(1, 1-dithiolate)2]2– interact strongly with transition metal ions to yield a new class of dithiolato-bridged heterobimetallic complexes MUO2(1, 1-dithiolate)2 (M=CoII, NiII, CuII, ZnII or PbII, 1, 1-dithiolate = isomaleonitrile dithiolate (i-MNT2–) and trithiocarbonate (CS 3 2– )). (Et4N)2[UO2(i-MNT)2] and (Et4N)2[UO2(CS3)2] have also been prepared. The complexes have been characterized by elemental analysis, i.r., u.v.-vis. and e.s.r. spectral studies. The heterobimetallic complexes are non-electrolytic, whereas (Et4N)2-[UO2 (i-MNT)2] and (Et4N)2[UO2(CS3)2] are 21 electrolytes. The i.r. data indicate symmetrical bidentate bridging behaviour for the dithiolate ligands. Magnetic moments, electronic spectra and e.s.r. studies are commensurate with a square planar environment around CoII, NiII and CuII.  相似文献   

11.
Reaction of CdII and ZnII thiocyanate with 3‐acetylpyridine leads to the formation of the new CdII and ZnII coordination compounds [Cd(NCS)2(3‐acetylpyridine)4] ( 1A ), [Cd(NCS)2(3‐acetylpyridine)2]n ( 1B ), [Cd(NCS)2(3‐acetylpyridine)]n ( 1C ) and [Zn(NCS)2(3‐acetylpyridine)2] ( 2A ). Compound 1A consists of discrete complexes, in which the metal centers are octahedrally coordinated by four terminal bonded N‐donor co‐ligands and two terminal N‐bonded thiocyanato anions. In compound 2A the metal centers are only tetrahedrally coordinated by two terminal bonded N‐donor co‐ligands and two terminal N‐bonded thiocyanato anions. In compound 1B the CdII cations are octahedrally coordinated by two terminal bonded N‐donor co‐ligands and four thiocyanato anions. The metal centers are linked by μ‐1, 3 bridging thiocyanato anions into chains. In compound 1C the metal cations are octahedrally coordinated by two μ‐1, 5 bridging 3‐acetyl‐pyridine ligands and four μ‐1, 3 bridging thiocyanato anions building up a three‐dimensional coordination network. Investigations on the thermal degradation behavior of all compounds using simultaneous differential thermoanalysis and thermogravimetry as well as X‐ray powder diffraction and IR spectroscopy prove that on heating compound 2A decompose without the formation of 3‐acetylpyridine‐deficient intermediates. In contrast, for compound 1A a stepwise decomposition is observed, leading to the formation of the 3‐acetylpyridine‐deficient compound [Cd(NCS)2(3‐acetylpyridine)2]n ( 1B ) which decomposes on further heating  相似文献   

12.
Nine new coordination compounds have been synthesized by the reaction of salts of bivalent metal ions (a=ZnII, b=CuII, c=NiII, d=CoII) with the bis(benzoylhydrazone) derivative of 4,6‐diacetylresorcinol (H4L). Three kinds of complexes have been obtained: homodinuclear compounds [M2(H2L)2]?nH2O ( 1 a , 1 b , 1 c , and 1 d ), homotetranuclear compounds [M4(L)2]?n(solv) ( 2 a and 2 c ), and heterotetranuclear compounds [Zn2M2(L)2]?n(solv) ( 2 ab , 2 ac , and 2 ad ). The structures of the free ligand H4L?2 DMSO and its complexes [Zn2(H2L)2(DMSO)2] ( 1 a* ), [Zn4(L)2(DMSO)6] ( 2 a* ), and [Zn0.45Cu3.55(L)2(DMSO)6]?2 DMSO ( 2 ab* ) were elucidated by single‐crystal X‐ray diffraction. The ligand shows luminescence properties and its fluorimetric behavior towards MII metals (M=Zn, Cu, Ni and Co) has been studied. Furthermore, the solid‐state luminescence properties of the ligand and compounds have been determined at room temperature. 1H NMR spectroscopic monitoring of the reaction of H4L with ZnII showed the deprotonation sequence of the OH/NH groups upon metal coordination. Heteronuclear reactions have also been monitored by using ESI‐MS and spectrofluorimetric techniques.  相似文献   

13.
Five new ZnII complexes, namely [Zn3(L)6] ( 1 ), [Zn2(Cl)2(L)2(py)2] ( 2 ), [Zn2(Br)2(L)2(py)2] ( 3 ), [Zn(L)2(py)] ( 4 ), and [Zn2(OAc)2(L)2(py)2] ( 5 ), were prepared by the solvothermal reaction of ZnX2 (X?=Cl?, Br?, F?, and OAc?) salts with a 8‐hydroxyquinolinate ligand (HL) that contained a trifluorophenyl group. All of the complexes were characterized by elemental analysis, IR spectroscopy, and powder and single‐crystal X‐ray crystallography. The building blocks exhibited unprecedented structural diversification and their self‐assembly afforded one mononuclear, three binuclear, and one trinuclear ZnII structures in response to different anions and solvent systems. Complexes 1 – 5 featured four types of supramolecular network controlled by non‐covalent interactions, such as π???π‐stacking, C? H???π, hydrogen‐bonding, and halogen‐related interactions. Investigation of their photoluminescence properties exhibited disparate emission wavelengths, lifetimes, and quantum yields in the solid state.  相似文献   

14.
Two porous metal–organic frameworks (MOFs), [Zn3(L)(H2O)2] ? 3 DMF ? 7 H2O ( MOF‐1 ) and [(CH3)2NH2]6[Ni3(L)2(H2O)6] ? 3 DMF ? 15 H2O ( MOF‐2 ), were synthesized solvothermally (H6L=1,2,3,4,5,6‐hexakis(3‐carboxyphenyloxymethylene)benzene). In MOF ‐ 1 , neighboring ZnII trimers are linked by the backbones of L ligands to form a fascinating 3D six‐connected framework with the point symbol (412.63) (412.63). In MOF‐2 , eight L ligands bridge six NiII atoms to generate a rhombic‐dodecahedral [Ni6L8] cage. Each cage is surrounded by eight adjacent ones through sharing of carboxylate groups to yield an unusual 3D porous framework. Encapsulation of LnIII cations for tunable luminescence and small drug molecules for efficient delivery were investigated in detail for MOF‐1 .  相似文献   

15.
The title complexes [M(sac)2(mpy)2] [sac is saccharinate (C7H4NO3S) and mpy is 2‐pyridyl­methanol (C6H7NO)], with M = ZnII and CdII, are isostructural and consist of neutral mol­ecules. The ZnII or CdII cations are octahedrally coordinated by the two neutral mpy and two anionic sac ligands. The mpy ligand acts as a bidentate donor through the amine N and hydroxyl O atoms. The sac ligands exhibit an ambidentate coordination behaviour; one is N‐coordinated and the other is O‐coordinated within the same coordination octahedron. The crystal packing is determined by C—H?O‐type hydrogen bonding, as well as by weak py–py and sac–sac aromatic π–π‐stacking interactions.  相似文献   

16.
Metal Complexes of Naphthyl‐substituted Thiourea Derivatives The thiourea derivative N, N‐diethyl‐N′‐2‐naphthoylthiourea ( 1 ) and three N‐(dialkylaminothiocarbonyl)‐N′‐(1‐naphthyl)‐arylamidines ( 2 ‐ 4 ) have been synthesized and CuII‐, NiII‐ and PdII‐complexes of them have been prepared. According to the X‐ray structure analyses 1 with CuII and NiII under deprotonation forms neutral bis‐chelates of nearly square‐planar coordination with a cis arrangement of the O and S ligator atoms. Using their N and S atoms in 1, 3 position as ligators, 2 ‐ 4 in deprotonated form coordinate to CuII and PdII as neutral bis‐chelates, in the case of CuII with a distorted tetrahedral coordination. PdII is coordinated square planar and has, probably due to the spatial influence of the 1‐naphthyl groups, a trans arrangement of the N and S ligator atoms.  相似文献   

17.
Stabilization of the central atom in an oxidation state of zero through coordination of neutral ligands is a common bonding motif in transition‐metal chemistry. However, the stabilization of main‐group elements in an oxidation state of zero by neutral ligands is rare. Herein, we report that the transamination reaction of the DAMPY ligand system (DAMPY=2,6‐[ArNH‐CH2]2(NC5H3) (Ar=C6H3‐2,6‐iPr2)) with Sn[N(SiMe3)2]2 produces the DIMPYSn complex (DIMPY=(2,6‐[ArN?CH]2(NC5H3)) with the Sn atom in a formal oxidation state of zero. This is the first example of a tin compound stabilized in a formal oxidation state of zero by only one donor molecule. Furthermore, three related low‐valent SnII complexes, including a [DIMPYSnIICl]+[SnCl3]? ion pair, a bisstannylene DAMPY{SnII[N(SiMe3)2]2}2, and the enamine complex MeDIMPYSnII, were isolated. Experimental results and the conclusions drawn are also supported by theoretical studies at the density functional level of theory and 119Sn Mössbauer spectroscopy.  相似文献   

18.
The reactions of pyrimidine‐phosphine ligand N‐[(diphenylphosphino)methyl]‐2‐pyrimidinamine ( L ) with various metal salts of PtII, PdII and CuI provide three new halide metal complexes, Pt2Cl4(μ‐L)2·2CH2Cl2 ( 1 ), Pd2Cl4(μ‐L)2 ( 2 ), and [Cu2(μ‐I)2L2]n ( 3 ). Single crystal X‐ray diffraction studies show that complexes 1 and 2 display a similar bimetallic twelve‐membered ring structure, while complex 3 consists of one‐dimensional polymeric chains, which are further connected into a 2‐D supramolecular framework through hydrogen bonds. In the binuclear complexes 1 and 2 , the ligand L serves as a bridge with the N and P as coordination atoms, but in the polymeric complex 3 , both bridging and chelating modes are adopted by the ligand. The spectroscopic properties of complexes 1 ‐ 3 as well as L have been investigated, in which complex 3 exhibits intense photoluminescence originating from intraligand charge transfer (ILCT) π→π* and metal‐to‐ligand charge‐transfer (MLCT) excited states both in acetonitrile solution and solid state, respectively.  相似文献   

19.
By using cyclohexane‐1,2‐diamine (chxn), Ni(ClO4)2 ? 6H2O and Na3[Mo(CN)8] ? 4H2O, a 3D diamond‐like polymer {[NiII(chxn)2]2[MoIV(CN)8] ? 8H2O}n ( 1 ) was synthesised, whereas the reaction of chxn and Cu(ClO4)2 ? 6H2O with Na3[MV(CN)8] ? 4H2O (M=Mo, W) afforded two isomorphous graphite‐like complexes {[CuII(chxn)2]3[MoV(CN)8]2 ? 2H2O}n ( 2 ) and {[CuII(chxn)2]3[WV(CN)8]2 ? 2H2O}n ( 3 ). When the same synthetic procedure was employed, but replacing Na3[Mo(CN)8] ? 4H2O by (Bu3NH)3[Mo(CN)8] ? 4H2O (Bu3N=tributylamine), {[CuII(chxn)2MoIV(CN)8][CuII(chxn)2] ? 2H2O}n ( 4 ) was obtained. Single‐crystal X‐ray diffraction analyses showed that the framework of 4 is similar to 2 and 3 , except that a discrete [Cu(chxn)2]2+ moiety in 4 possesses large channels of parallel adjacent layers. The experimental results showed that in this system, the diamond‐ or graphite‐like framework was strongly influenced by the inducement of metal ions. The magnetic properties illustrate that the diamagnetic [MoIV(CN)8] bridges mediate very weak antiferromagnetic coupling between the NiII ions in 1 , but lead to the paramagnetic behaviour in 4 because [MoIV(CN)8] weakly coordinates to the CuII ions. The magnetic investigations of 2 and 3 indicate the presence of ferromagnetic coupling between the CuII and WV/MoV ions, and the more diffuse 5d orbitals lead to a stronger magnetic coupling interaction between the WV and CuII ions than between the MoV and CuII ions.  相似文献   

20.
Metal complexes with Schiff base ligands have been suggested as potential phosphors in electroluminescent devices. In the title complex, tetrakis[6‐methyl‐2‐({[(pyridin‐2‐yl)methyl]imino}methyl)phenolato‐1:2κ8N,N′,O:O;3:2κ8N,N′,O:O]trizinc(II) hexafluoridophosphate methanol monosolvate, [Zn3(C14H13N2O)4](PF6)2·CH3OH, the ZnII cations adopt both six‐ and four‐coordinate geometries involving the N and O atoms of tetradentate 6‐methyl‐2‐({[(pyridin‐2‐yl)methyl]imino}methyl)phenolate ligands. Two terminal ZnII cations adopt distorted octahedral geometries and the central ZnII cation adopts a distorted tetrahedral geometry. The O atoms of the phenolate ligands bridge three ZnII cations, forming a dicationic trinuclear metal cluster. The title complex exhibits a strong emission at 469 nm with a quantum yield of 15.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号