首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The reaction of dibenzenediselenide, (SePh)2, with mercury in refluxing xylene gives bis(benzeneselenolato)mercury(II), [Hg(SePh)2], in a good yield. (nBu4N)[Hg(SePh)3] is obtained by the reaction of [Hg(SePh)2] with a solution of [SePh] and (nBu4N)Br in ethanol. The solid state structures of both compounds have been determined by X-ray diffraction. The mercury atom in [Hg(SePh)2] (space group C2, a = 7.428(2), b = 5.670(1), c = 14.796(4) Å, β = 103.60(1)°) is linearly co-ordinated by two selenium atoms (Hg–Se = 2.471(2) Å, Se–Hg–Se = 178.0(3)°). Additional weak interactions between the metal and selenium atoms of neighbouring molecules (Hg…Se = 3.4–3.6 Å) associate the [Hg(SePh)2] units to layers. The crystal structure of (nBu4N)[Hg(SePh)3] (space group P21/c, a = 9.741(1), b = 17.334(1), c = 21.785(1) Å, β = 95.27(5)°) consists of discrete complex anions and (nBu4N)+ counter ions. The coordination geometry of mercury is distorted trigonal-planar with Hg–Se distances ranging between 2.5 and 2.6 Å.  相似文献   

2.
Synthesis and Structures of the Selenolato-Bridged Mercury Clusters [Hg6(SePh)12(P t Bu3)2] and (HP t Bu3)2[Hg6(SePh)14] The reaction of HgCl2 with PtBu3 and PhSeSiMe3 yields [Hg6(SePh)12(PtBu3)2] ( 1 ) and (HPtBu3)2[Hg6(SePh)14] ( 2 ). X-ray structural analysis of the compounds shows them to have similar Hg–Se cages with distorted tetrahedral coordination around mercury. The cages are built up from edge- and vertex-sharing distorted tetrahedra.  相似文献   

3.
The novel mercury‐tellurium cluster [Hg8(μ‐n‐C3H7Te)122‐Br)Br3] is formed during the reaction of HgBr2 and (n‐C3H7Te)2Hg in DMSO. Its crystal structure has been elucidated showing [Hg8(μ‐n‐C3H7Te)122‐Br)]3+ units with a bromine‐centered distorted Hg8 cube. The mercury atoms are bridged by n‐C3H7Te ligands and the resulting clusters are linked to a three‐dimensional network by bromine atoms. The close packing of the cluster is mainly determined by the flexible n‐propyl residues of the telluride building blocks.  相似文献   

4.
Syntheses and Crystal Structures of new Selenido‐ and Selenolato‐bridged Copper Clusters: [Cu38Se13(SePh)12(dppb)6] (1), [Cu(dppp)2][Cu25Se4(SePh)18(dppp)2] (2), [Cu36Se5(SePh)26(dppa)4] (3), [Cu58Se16(SePh)24(dppa)6] (4), and [Cu3(SeMes)3(dppm)] (5) The reactions of copper(I) chloride or copper(I) acetate with monodentate phosphine ligands (PR3; R = organic group) and Se(SiMe3)2 have already lead to the formation of CuSe clusters with up to 146 copper and 73 selenium atoms. If the starting materials and the bidentate phosphine ligands (Ph2P–(CH2)n–PPh2, n = 1: dppm, n = 3: dppp, n = 4: dppb; Ph2P–C≡C–PPh2: dppa) and silylated chalcogen derivates are changed (RSeSiMe3; R = Ph, Mes) a series of new CuSe clusters can be synthesized. From single crystal X‐ray structure analysis one can characterise [Cu38Se13(SePh)12(dppb)6] ( 1 ), [Cu(dppp)2] · [Cu25Se4(SePh)18(dppp)2] ( 2 ), [Cu36Se5(SePh)26(dppa)4] ( 3 ), [Cu58Se16(SePh)24(dppa)6] ( 4 ) and [Cu3(SeMes)3(dppm)] ( 5 ). In this new class of CuSe clusters, compounds 1 and 4 possess a spherical cluster skeleton, wheras 2 and 3 have a layered cluster core.  相似文献   

5.
Sodium in dry methanol reduces 2‐cyanopyridine in the presence of 3‐hexamethyleneiminylthiosemicarbazide and produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim ( 1 ). Complexes with zinc(II ), cadmium(II ) and mercury(II ) have been prepared and characterized by spectroscopic techniques. In addition, the crystal structures of HAmhexim ( 1 ), [Zn(Amhexim)(OAc)]2μ·μDMSO ( 2 ), [Cd(HAmhexim)Cl2]μ·μDMSO ( 7 ), [Cd(Amhexim)2] ( 8 ), [Cd(HAmhexim)Br2]μ·μDMSO ( 9 ), [Cd(HAmhexim)I2]μ·μEtOH ( 10 ), [Hg(HAmhexim)Cl2]μ·μDMSO ( 11 ), [Hg(Amhexim)Br]2 ( 13 ), [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O ( 14 ) and [Hg(Amhexim)I]2 ( 15 ) have been determined. Coordination of the anionic and neutral thiosemicarbazone ligand occurs through the pyridine nitrogen atom, imine nitrogen atom, and thiolato or thione sulfur atom. In [Zn(Amhexim)(OAc)]2 one of the bridging acetato ligands has monodentate coordination and the other bridges in a bidentate manner. [Cd(Amhexim)2] is a 6‐coordinate species while the other cadmium complexes are 5‐coordinate. In [Hg(Amhexim)Br]2 and [Hg(Amhexim)I]2 the thiolato sulfur atoms act as bridges between the Hg atoms to form dimeric compounds and [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O is a trinuclear complex with three different centers — two metallic centers have a 5‐coordination and the another one has 4‐coordination. In addition, [Hg(HAmhexim)Cl2]μ·μDMSO and [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O shown a supramolecular one‐dimensional hydrogen‐bonded self‐assembling.  相似文献   

6.
Syntheses and Characterizations of the First Tris and Tetrakis(trifluoromethyl) Palladates(II) and Platinates(II), [M(CF3)3(PPh3)] and [M(CF3)4]2— (M = Pd, Pt) Tris(trifluoromethyl)(triphenylphosphino)palladate(II) and platinate(II), [M(CF3)3PPh3], and the tetrakis(trifluoromethyl)metallates, [M(CF3)4]2— (M = Pd, Pt), are prepared from the reactions of [MCl2(PPh3)2] and Me3SiCF3 / [Me4N]F or [I(CF3)2] salts in good yields. [Me4N][M(CF3)3(PPh3)] crystallize isotypically in the orthorhombic space group Pnma (no. 62) with Z = 4. The NMR spectra of the new compounds are described.  相似文献   

7.
[Hg(sulfamethoxazolato)2]·2DMSO ( 1 ) and [Cu2(CH3COO)4(sulfa‐methoxazole)2] ( 2 ) can be obtained by the reaction of sulfamethoxazole with mercury acetate or copper acetate in methanol. The structures of the two complexes were characterized by single crystal X—ray diffractometry. Compound 1 consists of sulfamethoxazolato ligands bridging the metal ions building an unidimensional chain. Two solvent dimethylsulfoxide molecules are involved via N‐H···O hydrogen bridges. The mercury atom shows a linear primary coordination arrangement formed by two trans deprotonated sulfonamidic nitrogen atoms. The overall coordination around the metal atom may be regarded as a strongly distorted octahedron when the interactions of mercury with four sulfonamidic oxygen atoms [bond distances of 2.761(4) Å—2.971(4) Å] are also considered to build an equatorial plane and the N1 and N1′ atoms [bond distance of 2.037(5) Å] occupy the apical positions. Compound 2 is a dinuclear complex in which the copper ions are bridged by four syn‐syn acetate ligands which are related by a symmetry centre located in the centre of the complex. Each copper atom presents a nearly octahedral coordination where the equatorial plane is formed by four oxygen atoms and an isoxazolic nitrogen atom and the second copper atom occupy the apical positions.  相似文献   

8.
Reaction of lithium phenylselenothiolate, generated in situ from the reductive cleavage of PhSe‐SiMe3 with alkyl lithium reagents and insertion of elemental sulfur, with triphenylphosphine solubilized CuCl affords the molecular cluster complex [Cu20Se43‐SePh)12(PPh3)6] ( 1 ). The analogous reaction with AgCl yields the extended structure [Ag(SePh)] ( 2 ) in which an infinite layer of AgI atoms is capped on either side by μ4‐SePh ligands. 1: space group P¯1, a = 17.9510(6), b = 18.1712(7), c = 31.4311(11) Å, a = 78.098(2), β = 82.905(2), γ = 70.012(2)°. 2: space group C2/c, a = 5.8762(6), b = 7.2989(7), c = 29.124(2) Å, β = 95.790(3)°.  相似文献   

9.
The six‐membered ring Hg3Te3 of [Hg3Cl3(μ‐TePh)3]·2 DMSO {(Ph = C6H5; DMSO = (CH3)2SO} was opened by redissolution with DMSO, reacting with Co[Hg(SCN)4] and affording polymeric . The monoclinic novel compound belong to the space group P21/n and assembles in a bidimensional lattice tetrahedral HgII(SCN)2Te2‐ and octahedral CoII(NCS)4(DMSO)2‐chains linked trough SCN bridges along the crystallographic axis b and diagonally to the ac axes. The structure of [(DMSO)2Co(NCS)4(Hg—TePh)2]n is limited by the DMSO ligands in the axial positions of the Co‐octahedrons.  相似文献   

10.
Structures of New Bis(pentafluorophenyl)halogeno Mercurates [{Hg(C6F5)2}3(μ‐X)] (X = Cl, Br, I) From the reactions of [PNP]Cl or [PPh4]Y (Y = Br, I) with Hg(C6F5)2 crystals of the composition [Cat][{Hg(C6F5)2}3X] (Cat = PNP, X = Cl ( 1 ); Cat = PPh4, X = Br ( 2 ), I ( 3 )) are formed. 1 crystallizes in the triclinic space group P1¯, 2 and 3 crystallize isotypically in the monoclinic space group C2/c. In the crystals the halide anions are surrounded by three Hg(C6F5)2 molecules. The reaction of [PPh4]Br with Hg(C6F5)2 under slightly changed conditions gives the compound [PPh4]2[{Hg(C6F5)2}3(μ‐Br)][{Hg(C6F5)2}2(μ‐Br)] ( 4 ).  相似文献   

11.
Zincselenide- and Zinctellurideclusters with Phenylselenolate- and Phenyltellurolateligands. The Crystal Structures of [NEt4]2[Zn4Cl4(SePh)6], [NEt4]2[Zn8Cl4Se(SePh)12], [Zn8Se(SePh)14(PnPr3)2], [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr, Ph), and [Zn10Te4(TePh)12(PR3)2] (R = nPr, Ph) In the prescence of NEt4Cl ZnCl2 reacts with PhSeSiMe3 or a mixture of PhSeSiMe3/Se(SiMe3)2 to form the ionic complexes [NEt4]2[Zn4Cl4(SePh)6] 1 or [NEt4]2[Zn8Cl4Se(SePh)12] 2 respectively. The use of PnPr3 instead of the quarternary ammonia salt leads in toluene to the formation of crystalline [Zn8Se(SePh)14(PnPr3)2] 3 . Reactions of ZnCl2 with PhTeSiMe3 and tertiary phosphines result in acetone in crystallisation of the ionic clusters [HPnPr2R]2[Zn8Cl4Te(TePh)12] (R = nPr 4 , Ph 5 ) and in THF of the uncharged [Zn10Te4(TePh)12(PR3)2] (R = nPr 6 , Ph 7 ). The structures of 1–7 were obtained by X-ray single crystal structure. ( 1 : space group P21/n (No. 14), Z = 4, a = 1212,4(2) pm, b = 3726,1(8) pm, c = 1379,4(3) pm β = 99,83(3)°; 2 space group P21/c (Nr. 14), Z = 4, a = 3848,6(8) pm, b = 1784,9(4) pm, c = 3432,0(7) pm, β = 97,78(3)°; 3 : space group Pnn2 (No. 34), Z = 2, a = 2027,8(4) pm, b = 2162,3(4) pm, c = 1668,5(3) pm; 4 : space group P21/c (No. 14), Z = 4, a = 1899,8(4) pm, b = 2227,0(5) pm, c = 2939,0(6) pm, β = 101,35(3)°; 5 : space group space group P21/n (No. 14), Z = 4, a = 2231,0(5) pm, b = 1919,9(4) pm, c = 3139,5(6) pm, β = 109,97(4)°; 6 : space group I41/a (No. 88), Z = 4, a = b = 2566,0(4) pm, c = 2130,1(4) pm; 7 : space group P1¯ (No. 2), Z = 2, a = 2068,4(4) pm, b = 2187,8(4) pm, c = 2351,5(5) pm, α = 70,36°, β = 84,62°, γ( = 63,63°)  相似文献   

12.
The title complex, [MnHg(SCN)4(CH4N2O)3]n, consists of slightly distorted octahedral MnN3O3 and tetrahedral HgS4 units. The MnII atom is coordinated by the O atoms of three urea mol­ecules and by the N atoms of three SCN? ions; HgII is coordinated by four S atoms from SCN? ions. Each pair of MnII and HgII atoms is connected by an –SCN– bridge, forming infinite two‐dimensional –Mn—NCS—Hg– networks.  相似文献   

13.
The title complex, [MnHg(NCS)4(C2H5NO)2]n, consists of slightly distorted MnN4O2 octa­hedra and HgS4 tetra­hedra. Each MnII cation is bound to four N atoms of the NCS groups and two O atoms of the N‐methyl­formamide (NMF) ligands in a cis configuration. Each HgII cation is coordinated to four S atoms of NCS groups. Each pair of MnII and HgII cations is connected by an –NCS– bridge, forming an infinite three‐dimensional –Mn—NCS—Hg– network.  相似文献   

14.
Two synthetic routes to prepare [Hg3(O2SePh)(SePh)5]n and its structural characterization are presented in this paper. This compound results either from the partial oxidation of mercury phenylselenolate clusters or from a mixture of its components with defined stoichiometry. This compound was observed in almost all of our reactions as a by‐product, during the development of the synthesis of new mercury selenolate clusters. It was now characterized by single‐crystal X‐ray diffractometry, elemental analysis, and infrared spectroscopy.  相似文献   

15.
Contributions on Crystal Structures and Thermal Behaviour of Anhydrous Phosphates. XXIII. Preparation, Crystal Structure, and Thermal Behaviour of the Mercury(I) Phosphates α-(Hg2)3(PO4)2, β-(Hg2)3(PO4)2, and (Hg2)2P2O7 Light-yellow single crystals of (Hg2)2P2O7 have been obtained via chemical vapour transport in a temperature gradient (500 °C → 450 °C, 23 d) using Hg2Cl2 as transport agent. Characteristic feature of the crystal structure (P2/n, Z = 2, a = 9,186(1), b = 4,902(1), c = 9,484(1) Å, β = 98,82(2)°, 1228 independent of 5004 reflections, R(F) = 0,066 for 61 variables, 7 atoms in the asymmetric unit) are Hg22+-units with d(Hg1–Hg1) = 2,508 Å and d(Hg2–Hg2) = 2,519 Å. The dumbbells Hg22+ are coordinated by oxygen, thus forming polyhedra [(Hg12)O4] and [(Hg22)O6]. These polyhedra share some oxygen atoms. In addition they are linked by the diphosphate anion P2O74– (ecliptic conformation; ∠(P,O,P) = 129°) to built up the 3-dimensional structure. Under hydrothermal conditions (T = 400 °C) orange single crystals of the mercury(I) orthophosphates α-(Hg2)3(PO4)2 and β-(Hg2)3(PO4)2 have been obtained from (Hg2)2P2O7 and H3PO4 (c = 1%). The crystal structures of both modifications have been refined from X-ray single crystal data [α-form (β-form): P21/c (P21/n), Z = 2 (2), a = 8,576(3) (7,869(3)), b = 4,956(1) (8,059(3)), c = 15,436(3) (9,217(4)) Å, β = 128,16(3) (108,76(4))°, 1218 (1602) independent reflections of 4339 (6358) reflections, R(F) = 0,039 (0,048) for 74 (74) variables, 8 (8) atoms in the asymmetric unit]. In the structure of α-(Hg2)3(PO4)2 three crystallographically independent mercury atoms, located in two independent dumbbells, are coordinated by three oxygen atoms each. Thus, [(Hg2)O6] dimers with a strongly distorted tetrahedral coordination of all mercury atoms are formed. Such dimers are present besides [(Hg2)O5]-polyhedra in the less dense crystal structure of β-(Hg2)3(PO4)2 (d(Hg–Hg) = 2,518 Å). The mercury(I) phosphates are thermally labile and disproportionate between 200 °C (β-(Hg2)3(PO4)2) and 480 °C (α-(Hg2)3(PO4)2) to elemental mercury and the corresponding mercury(II) phosphate.  相似文献   

16.
(PhSe)2Hg reacts in DMF with HgX2 (X = Cl, Br) in the presence of bis(pyrimidin-2-thio)methane/triphenylphosphine/4,4′-bipyridine, to give the polymeric cages [Hg5Cl3(PhSe)7] n (1), [Hg7Cl3(PhSe)11] n (2) and [Hg7Br3(PhSe)11] n (3). In compound 1 the polymeric chains along the a axis are linked through H···Cl interactions in the c axis, assembling a two-dimensional lattice in the ac plane. The analogue compounds 2 and 3 attain bulky single clusters with the general formula Hg14X6(SePh)22 (X = Cl, Br), accomplished by the symmetrical combination of two asymmetric units [Hg7X3(PhSe)11]. While the polymerization of the single units of 2 along the c axis occurs through 4 selenium atoms, the polymerization of 3 arises through 6 bonds involving Hg and Se atoms. Although 2 and 3 seem to be resultant from the random assembly of asymmetrical rings, both cluster compounds present symmetry centers.  相似文献   

17.
Polysulfonyl Amines. XXXVII. Preparation of Mercury Dimesylamides. Crystal and Molecular Structures of Hg[N(SO2CH3)2]2, Hg[{N(SO2CH3)2}2(DMSO)2], and Hg[{N(SO2CH3)2}2(HMPA)] Hg[N(SO2CH3)2]2 ( 1 ) and Hg2[N(SO2CH3)2]2 ( 2 a ) are formed as colourless, sparingly soluble precipitates when solutions of Hg(NO3)2 or Hg2(NO3)2 in dilute nitric acid are added to an aqueous HN(SO2CH3)2 solution. By a similar reaction, Hg2[N(SO2C6H4 ? Cl? 4)2]2 is obtained. 1 forms isolable complexes of composition Hg[N(SO2CH3)2]2 · 2 L with L = dimethyl sulfoxide (complex 3 a ), acetonitrile, dimethyl formamide, pyridine or 1,10-phenanthroline and a (1/1) complex Hg[N(SO2CH3)2]2 · HMPA ( 4 ) with hexamethyl phosphoramide. Attempted complexation of 2 a with some of these ligands induced formation of Hg0 and the corresponding HgII complexes. Crystallographic data (at -95°C) are for 1: space group 141/a, a = 990.7(2), c = 2897.7(8) pm, V = 2.844 nm3, Z = 8, Dx = 2.545Mgm?3; for 4a: space group P1 , a = 767.8(2), b = 859.2(2), c = 925.2(2)pm α = 68.44(2), β = 86.68(2), γ = 76.24(2)°, V = 0.551nm3, Z = 1, Dx = 2.113 Mgm?3; for 4: space group P21/c, a = 1041.3(3), b = 1545.4(3), c = 1542.5(3) pm, β = 100.30(2)°, V = 2.474nm3, Z = 4, Dx = 1.944Mgm3. The three compounds form molecular crystals. The molecular structures contain a linear or approximately linear, covalent NHgN moiety; the Hg? N distances and N? Hg? N angles are 206.7(4) pm and 176.3(2)° for 1, 207.2(2) pm and 180.0° for 3a, 205.7(4)/206.7(4) pm and 170.5(1)° for 4. In the complexes 3a and 4, the 0-ligands are bonded to the Hg atoms perpendicularly to the N? Hg? N axes, leading in 3a to a square-planar trans-(N2O2) coordination with Hg? 0 261.2(2) pm and N? Hg? O 92.3(1)/87.7(1)°, in 4 to a slightly distorted T-shaped (N2O) geometry with Hg? 0 246.2(4)pm and N? Hg? 0 96.7(1)/92.0(1)°. In all three structures, the primary coordination is extended to a severely distorted (N2O4) hexacoordination by the appropriate number of secondary, inter- and/or intramolecular Hg…?0 inter-actions (0 atoms from sulfonyl groups, Hg…?O distances in the range 280—300pm). The intramolecular Hg…?O interactions give rise to nearly planar four-membered [HgNSO] rings. The molecule of 1 has a two-fold axis through the bisector of the N? Hg? N angle, the molecule of 3a an inversion center at the Hg atom. The molecule of 4 has no symmetry.  相似文献   

18.
Solvothermal reaction of [MnCl2(amine)] (amine = terpy and tren) with elemental As and Se at a 1:1:2 molar ratio in H2O/tren (10:1) affords the dimanganese(II) complexes [{Mn(terpy)}2(μ‐As2Se4)] ( 1 ) and [{Mn(tren)}2(μ‐As2Se5)] ( 2 ) respectively. The tetradentate [As2Se4]4? bridging ligands in 1 contain a central As–As bond and exhibit approximately C2h symmetry. Pairs of gauche sited Se atoms participate in five‐membered As2Se2Mn chelate rings. In contrast, two AsSe3 pyramids share a common corner in the [As2Se5]4? ligands of 2 and each coordinates an [Mn(tren)]2+ fragment through a single terminal Se atom. Such dinuclear complexes are linked into tetranuclear moieties through weak Se···Mn interactions of length 3.026(3) Å involving one of these terminal Se atoms. At a 1:3:6 molar ratio, solvothermal reaction of [MnCl2(tren)] with As and Se leads to formation of a second dinuclear complex [{Mn(tren)}2(μ‐As2Se6)2] ( 3 ), which contains two bridging bidentate [As2Se6]2? ligands. These are cyclic with an As2Se4 ring and can be regarded as being derived from [As2Se5]4? anions by formation of two Se‐Se bonds to an additional Se atom.  相似文献   

19.
The new ligand‐deficient chain polymer [Hg(μ‐Br)2(3,5‐Br2py)] has been obtained in form of single crystals by thermolysis of the ligand‐rich [Hg(μ‐Br)2(3,5‐Br2py)2] at 180 °C at ambient pressure. From this reaction, high quality crystals of the product are directly accessible. The title compound features HgII cations in a distorted square‐pyramidal coordination; their metal centers aggregate via edge‐sharing with asymmetric halide bridges to chains in which all apical N donor ligands are oriented to the same side of the [Hg(μ‐Br)2] backbone. The new polymer cannot be prepared by stoichiometric reaction in solution.  相似文献   

20.
Preparation, Spectroscopic Characterization and Crystal Structures of Mercury(II)‐bis(tetracyanoborate) Hg[B(CN)4]2 and Dimercury(I)‐bis(tetracyanoborate) Hg2[B(CN)4]2 Hg[B(CN)4]2 ( 1 ) is synthesised by the reaction between Hg(NO3)2 and K[B(CN)4]2. In a comproportionation reaction of 1 with elemental mercury the corresponding mercury(I) salt Hg2[B(CN)4]2 ( 2 ) is obtained. The compounds were characterised by vibrational‐ and NMR‐spectroscopy, and their crystal structures were determined. Hg[B(CN)4]2 crystallizes in the trigonal system in the space group P3¯m1 with a = 781.75(3) pm, c = 601.68(2) pm, V = 318.44(2)Å3, and one formula unit per unit cell. For Hg2[B(CN)4]2 an orthorhombic unit cell with a = 568.9(1) pm, b = 3280.9(7) pm, c = 601.68(2) pm, V = 1389.6(5)Å, and Z = 4 is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号