首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The local structure of the double perovskite (Sr2‐xCax)FeMoO6 (0 ≤ × ≤ 2.0) and Sr2CrMO6 (M = Mo, W) systems have been probed by extended X‐ray absorption fine structure (EXAFS) spectroscopy at the Fe and Cr K‐edges. We found Fe‐O (ave) distance apparently decreases from 1.999 Å (x = 0) to 1.991 Å (x = 1.0) in (Sr2‐xCax)FeMoO6 (tetragonal structure). When x is increased further from 1.5 to 2.0, the Fe‐O bond distance decreased from 2.034 Å to 2.012 Å (monoclinic structure). In addition, Cr‐O, Sr‐Cr, and Cr‐Mo bond distances in Sr2CrWO6 are all slightly larger than the bond distances of Sr2CrMoO6, which is due to the ionic radius of the W5+ (0.62 Å) which is larger than the ionic radius of Mo5+ (0.61 Å). The results are consistent with our XRD refinements data.  相似文献   

2.
A new metal‐oxo cluster supported transition metal complex, [Cu(en)2(H2O)]2[Cu(en)2]0.5[MoVI8VIV6VVO42{Cu(en)2}], has been synthesized under hydrothermal conditions. Its structure was determined by single‐crystal X‐ray diffraction. The compound crystallizes in the triclinic system, space group (No. 2), a = 12.245(5), b = 12.669(5), c = 20.949(8) Å, α = 77.120(13), β = 78.107(17), γ = 65.560(14)°, V = 2860(2) Å3, Z = 2. The metal‐oxo cluster contains a novel bicapped a‐Keggin structure unit and a [Cu(en)2]2+ unit covalently bonded to the [Mo8V7O42]7? cluster.  相似文献   

3.
A polyoxometalate‐based inorganic–organic hybrid compound [CoII(2, 2′‐bpy)2]2[Mo8O26] ( 1 ) was synthesized by hydrothermal methods and structurally characterized by IR spectrum, TG analysis and X‐ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n, a = 10.0681(2), b = 16.4467(2), c = 15.7838(3) Å, β = 100.046(1)°, V = 2573.52(8) Å3, Z = 2. The structure of 1 is built up from β‐[Mo8O26]4? subunits covalently linked via [CoII(2, 2′‐bpy)2]2+ fragments into a infinite 1D {[CoII(2, 2′‐bpy)2]2[Mo8O26]} polymer.  相似文献   

4.
Herein in we report the unprecedented catalytic activity of an iron‐based oxygen‐deficient perovskite for the oxygen‐evolution reaction (OER). The systematic trends in OER activity as a function of composition, defect‐order, and electrical conductivity have been demonstrated, leading to a methodical increase in OER catalytic activity: Ca2Fe2O6?δ<CaSrFe2O6?δ<Sr2Fe2O6?δ. Sr2Fe2O6?δ also has the highest electrical conductivity and a unique type of defect‐order. In conventional experiments using glassy carbon electrode, Sr2Fe2O6?δ shows better OER activity than the current state of the art catalysts, Ba0.5Sr0.5Co0.8Fe0.2O3?δ and RuO2. It also offers a high intrinsic electrical conductivity, which allows it to act as a catalyst without the need for glassy carbon electrode or carbon powder. Pure disks of this material exhibit an outstanding activity for OER, without any additives or need for electrode preparation.  相似文献   

5.
The title compound, [Zn(C14H8O6S)(H2O)2]n, is the first reported metal complex of the 4,4′‐sulfonyldibenzoate anion. The structure comprises zigzag chains of alternating [Zn(H2O)2]2+ and sulfonyldibenzoate units, the central Zn and S atoms of which lie on crystallographic twofold axes. The ZnII centre occupies a strongly distorted tetrahedral environment [O—Zn—O = 83.30 (7)–136.19 (8)°], coordinated by the two water O atoms [Zn—O = 1.986 (2) Å] and one O atom from each of two carboxylate groups [Zn—O = 1.9942 (19) Å], with much longer contacts to the other O atoms of these carboxylates [Zn—O = 2.528 (2) Å]. Hydrogen bonds between carboxylate O atoms and coordinated water molecules in adjacent chains lead to the formation of a three‐dimensional network structure.  相似文献   

6.
The title compound, {[Co(C8H7NO2)2(H2O)2](NO3)2}n, is the first d‐metal ion complex involving bidentate bridging of a β‐dialdehyde group. The Co2+ ion is situated on an inversion centre and adopts an octahedral coordination with four equatorial aldehyde O atoms [Co—O = 2.0910 (14) and 2.1083 (14) Å] and two axial aqua ligands [Co—O = 2.0631 (13) Å]. The title compound has a two‐dimensional square‐grid framework structure supported by propane‐1,3‐dionate O:O′‐bridges between the metal ions. The organic ligand itself possesses a zwitterionic structure, involving conjugated anionic propane‐1,3‐dionate and cationic pyridinium fragments. Hydrogen bonding between coordinated water molecules, the pyridinium NH group and the nitrate anions [O...O = 2.749 (2) and 2.766 (3) Å, and N...O = 2.864 (3) Å] is essential for the crystal packing.  相似文献   

7.
[Mo3,OS3(dtp)4(H2O)] reacts with NaOAc·3H2O in Py to give the title compound. The crystal data are as follows: [Mo2OS3)(OAc)2(dtp)2·Py]?0.5H,O(dtp = [S3P(OC2H5)2]?, Py = C5H5N); M = 976.64; triclinic; space group P1 ; a=11.704(5), b=14.169(7), c= 11.688 (5) Å α=109.94(4) β = 91.53(4), γ = 91.93(4)°; V= 1819(1) Å2; Z=2; Dc = 1.78 g·cm?3 λ(Mo Kα) = 0.71069 Å μ=15.15 cm?1; F(000) = 970 T=296 K; final R=0.071 for 1652 reflections with I>3σ(I). In the molecule, the [Mo3OS3] core is surrounded by two bridging OAc groups and two terminal chelate dtp groups attached to the {Mo3} triangle in a symmetric style, and the Py ligand is coordinated to the Mo atom at the apex of {Mo3} triangle with the nitrogen. This novel configuration is obtained for the first time with Mo—N bond length being 2.27 (2) Å and three Mo—Mo bond lengths 2.584 (4), 2.587 (4) and 2.657(4) Å, respectively. As a whole, the molecule has a virtual C2 symmetry.  相似文献   

8.
Single crystals of the filled Ti2Ni‐type Ti3Zn3Ox η‐phase (cubic, space group Fdm) having {111} facets were obtained by heating Ti, Zn and ZnO with a Bi flux. The lattice parameter of a single crystal prepared at 800°C was 11.4990 (2) Å, which is close to that of Ti3Zn3O∼0.5 (a = 11.502 Å), as reported by Rogl & Nowotny [Monatsh. Chem. (1977), 108 , 1167–1180]. The occupancies of the O1 (16c) and O2 (8a) sites were 1 and 0.071 (12), respectively, and the composition of the crystal was determined to be Ti3Zn3O1.04. A single crystal from the sample prepared at 650°C had the same structure type, with a lattice parameter of 11.5286 (2) Å. However, O atoms were situated at a new 32e site in addition to the original 16c and 8a sites, and the Zn‐atom positions were split in accordance with the new O‐atom site. The chemical formula Ti3Zn3O1.27 determined by X‐ray diffraction occupancy refinement agreed with the chemical composition obtained for the cross section of the single crystal determined with an electron probe microanalyzer.  相似文献   

9.
The crystal structures among M1–M2–(H)‐arsenites (M1 = Li+, Na+, K+, Rb+, Cs+, Ca2+, Sr2+, Ba2+, Cd2+, Pb2+; M2 = Mg2+, Mn2+,3+, Fe2+,3+, Co2+, Ni2+, Cu2+, Zn2+) are less investigated. Up to now, only the structure of Pb3Mn(AsO3)2(AsO2OH) was described. The crystal structure of hydrothermally synthesized Na4Cd7(AsO3)6 was solved from the single‐crystal X‐ray diffraction data. Its trigonal crystal structure [space group R$\bar{3}$ , a = 9.5229(13), c = 19.258(4) Å, γ = 120°, V = 1512.5(5) Å3, Z = 3] represents a new structure type. The As atoms are arranged in monomeric (AsO3)3– units. The surroundings of the two crystallographically unique sodium atoms show trigonal antiprismatic coordination, and two mixed Cd/Na sites are remarkably unequal showing tetrahedral and octahedral coordinations. Despite the 3D connection of the AsO3 pyramids, (Cd,Na)Ox polyhedra and NaO6 antiprisms, a layer‐like arrangement of the Na atoms positioned in the hexagonal channels formed by CdO4 deformed tetrahedra and AsO3 pyramids in z = 0, 1/3, 2/3 is to be mentioned. These pseudo layers are interconnected to the 3D network by (Cd,Na)O6 octahedra. Raman spectra confirmed the presence of isolated AsO3 pyramids.  相似文献   

10.
The crystal structure of the title compound, poly­[bis‐[copper(I)‐μ‐(4,4′‐bipyridyl)‐N:N′]‐μ‐dimolybdato‐O:O′],[Cu2(C10H8N2)2{Mo2O7}]n, consists of {Mo2O7}2? units (with the central O atom lying on twofold symmetry axes) and [Cu(4,4′‐bipy)]nn+ chains (bipy = bipyridyl); the chains are generated by a c‐glide‐plane operation. The {Mo2O7}2? units are covalently bridged to two [Cu(4,4′‐bipy)]nn+ chains, forming a complex with a bridged double‐chain structure. The Cu—O and Cu—N distances are 2.191 (3) and 1.933 (3) Å, respectively.  相似文献   

11.
On the System Zn/Mo/O. I. Phases and Properties of Ternary Zinc Molybdates; Crystal Structure of Zn3Mo2O9 Several ternary compounds are known in the Zn/Mo/O-system. The phases ZnMoO4, Zn2Mo3O8 and Zn3Mo2O9 are stable at 900°C. The coexistence ranges are shown in the ternary phase diagram. The structure of Zn3Mo2O9 has been determined by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/m (a = 7,757(1) Å, b = 7,132(1) Å, c = 8,370(2) Å, β = 117,40(1)º, Z = 2).  相似文献   

12.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

13.
Hydrothermal reactions of MoO3, CuO, and pyrazine‐2‐carboxylic acid (Hpzca) resulted in two polymeric complexes, {[Cu5(pzca)6(H2O)4][Mo8O26]}n ( 1 ; pzca=pyrazine‐2‐carboxylate) and [Mo3Cu2O10(pz)]n ( 2 ; pz=pyrazine). The former crystallized in the monoclinic space group P21/c with a=10.805(3) Å, b=13.061(5) Å, c=13.337(10) Å, β=90.20(4)°, V=2729(2) Å3, and Z=2. The later crystallized in the orthorhombic space group Pnma with a=12.385(2) Å, b=7.6044(9) Å, c=12.7880(14) Å, V=1204.4(2) Å3, and Z=4. X‐Ray diffraction analysis revealed that 1 possesses a two‐dimensional wave‐like structure, formed from a zigzag one‐dimensional chain, and 2 is a three‐dimensional network structure formed from a one‐dimensional chain and a pz bridging ligand. The temperature‐dependent magnetic behavior of 1 was studied.  相似文献   

14.
Poly[bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) γ‐octamolybdate(VI) dihydrate], {(C10H16N4)2[Mo8O26]·2H2O}n, (I), and bis(3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium) α‐dodecamolybdo(VI)silicate tetrahydrate, (C10H16N4)2[SiMo12O40]·4H2O, (II), display intense hydrogen bonding between the cationic pyrazolium species and the metal oxide anions. In (I), the asymmetric unit contains half a centrosymmetric γ‐type [Mo8O26]4− anion, which produces a one‐dimensional polymeric chain by corner‐sharing, one cation and one water molecule. Three‐centre bonding with 3,3′,5,5′‐tetramethyl‐4,4′‐bi‐1H‐pyrazole‐2,2′‐diium, denoted [H2Me4bpz]2+ [N...O = 2.770 (4)–3.146 (4) Å], generates two‐dimensional layers that are further linked by hydrogen bonds involving water molecules [O...O = 2.902 (4) and 3.010 (4) Å]. In (II), each of the four independent [H2Me4bpz]2+ cations lies across a twofold axis. They link layers of [SiMo12O40]4− anions into a three‐dimensional framework, and the preferred sites for pyrazolium/anion hydrogen bonding are the terminal oxide atoms [N...O = 2.866 (6)–2.999 (6) Å], while anion/aqua interactions occur preferentially viaμ2‐O sites [O...O = 2.910 (6)–3.151 (6) Å].  相似文献   

15.
The supermolecular based on sodium molybdate(VI) and sulfate, dibenzo‐18‐crown‐6 was synthesized in acetonitrile and characterized by elemental analysis, IR, 1H NMR, single crystal X‐ray diffraction, indicating that it contains [S2Mo18O62]4+ and [Na(DB18C6)(H2O)]+, where each sodium ion is deviated from the plane defined by the oxygen atoms in the corresponding crown ether. The compound crystallizes in the monoclinic space group C2/c with a=3.29332(10) nm, b=1.90917(6) nm, c=2.63132(7) nm, β=121.6630(10)°, V=14081.8(7) nm3, Z=8, T=293(2) K, and R1 (wR2)=0.0177 (0.1525). The compound exhibits a novel organic‐inorganic structure, in which the crown ether‐sodium complexes are coordinated to the terminal oxygen atoms of Mo18O54 and the oxygen atoms of water molecule.  相似文献   

16.
Synthesis and Crystal Structure of the First Oxonitridoborate — Sr3[B3O3N3] The cyclotri(oxonitridoborate) Sr3[B3O3N3] was synthesized at 1450 °C as coarsely crystalline colourless crystals by the reaction of SrCO3 with poly(boron amide imide) using a radiofrequency furnace. The structure was solved by single‐crystal X‐ray diffractometry (Sr3[B3O3N3], Z = 4, P21/n, a = 663.16(2), b = 786.06(2), c = 1175.90(3) pm, η = 92.393(1)°, R1= 0.0441, wR2 = 0.1075, 1081 independent reflections, 110 refined parameters). Besides Sr2+ there are hitherto unknown cyclic [B3O3N3]6— ions (B—N 143.7(10) — 149.1(9) pm, B—O 140.5(8) — 141.4(8) pm).  相似文献   

17.
A new zinc phosphite with the formula Zn3(tren)(HPO3)3·xH2O (x≈0.5) has been synthesized under hydrothermal conditions and characterized by FTIR, elemental analysis, powder X‐ray diffraction, single‐crystal X‐ray diffraction, thermogravimetric analysis and its fluorescent spectrum. The compound crystallizes in the triclinic system, space group (No.2), a = 10.1188(9) Å, b = 10.4194(9) Å, c = 10.5176(9) Å, α = 60.763(2)°, β = 70.6150(10)°, γ = 80.725(2)°, V = 912.77(14) Å3, Z = 2. The structure consists of double crankshaft chains, which are linked by Zn‐O‐P bonds to form 8‐ and 12‐membered channels along the [100] direction. The claw‐like Zn‐centered complexes of Zn(N4C6H18) as the supported templates, hang into the 12‐MR channels through Zn‐O‐P linkages with framework.  相似文献   

18.
NbOI3 was obtained from a reaction of Nb2O5, Nb, and I2. Single crystals free from disorder were a by‐product from a reaction with additional CsI. The monoclinic crystal structure (C2, a = 14.624(3) Å, b = 3.9905(8) Å, c = 12.602(3) Å, β = 120.4(3)°, Z = 4, R1(F) = 0.0368, wR2(F2) = 0.0804) represents a new structure type which is built up by distorted octahedral NbI4O2 with unequal O‐atoms in trans‐position. The octahedra are linked to dimers by a common edge of iodine atoms and to double chains by the apical oxygen atoms. A non‐centrosymmetric structure results because the short Nb–O distances point to the same direction and the polar double chains are parallel. The crystal structure of NbOBr3 (NbOCl3‐type, , a = 11.635(6) Å, c = 3.953(2) Å, R1(F) = 0.082, wR2(F2) = 0.174) shows the same polar double chains but the dimeric units Nb2Br6O2 are orthogonal.  相似文献   

19.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXIII [1] In2P2O7 an Indium(I)‐diphosphatoindate(III), and In4(P2O7)3 — Synthesis, Crystallization, and Crystal Structure Solid state reactions via the gas phase lead to the new mixed‐valence indium(I, III)‐diphosphate In2P2O7. Colourless single crystals of In2P2O7 have been grown by isothermal heating of stoichiometric amounts of InPO4 and InP (800 °C; 7d) using iodine as mineralizer. The structure of In2P2O7 [P21/c, a = 7.550(1) Å, b = 10.412(1) Å, c = 8.461(2) Å, b = 105.82(1)°, 2813 independent reflections, 101 parameter, R1 = 0.031, wR2 = 0.078] is the first example for an In+ cation in pure oxygen coordination. Observed distances d(InI‐O) are exceptionally long (dmin(InI‐O) = 2.82 Å) and support assumption of mainly s‐character for the lone‐pair at the In+ ion. Single crystals of In4(P2O7)3 were grown by chemical vapour transport experiments in a temperature gradient (1000 → 900 °C) using P/I mixtures as transport agent. In contrast to the isostructural diphosphates M4(P2O7)3 (M = V, Cr, Fe) monoclinic instead of orthorhombic symmetry has been found for In4(P2O7)3 [P21/a, a = 13.248(3) Å, b = 9.758(1) Å, c = 13.442(2) Å, b = 108.94(1)°, 7221 independent reflexes, 281 parameter, R1 = 0.027, wR2 = 0.067].  相似文献   

20.
The novel dinuclear Ni2+ complex [Ni2(μ‐Cl)(μ‐OAc) (EGTB)]·Cl·ClO4·2CH3OH, where EGTB is N, N, N′, N′‐tetrakis (2‐benzimidazolyl methyl‐1, 4‐di‐ethylene amino)glycol ether, crystallizes in the orthorhombic space group Pnma with a = 15.272(2), b = 14.768(2), c = 22.486(3) Å, V = 5071.4(12) Å3, Z = 4, Dcalc = 1.414 g cm?3, and is bridged by triply bridging agents of a chloride ion, an acetate and an intra‐ligand (‐OCH2CH2O‐) group. The nickel coordination geometry is that of a slightly distorted octahedron with a NiN3O2Cl arrangement of the ligand donor atoms. The Ni–Cl distance is 2.361(2) Å, and two Ni–O distances are 1.996(5) and 2.279(6) Å. The three Ni–N distances are 2.033(7), 2.060(6), and 2.166(6) Å with the Ni–N bond trans to an ether oxygen the shortest, the Ni–N bond trans to an acetate oxygen the middle and the Ni–N bond trans to Cl the longest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号