首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural Interactions of Planar and Non‐planar Bis(1,2‐dithiosquarato)metalate Host Lattices with CuII Complexes – Structure and EPR Investigations 1,2‐Dithiosquaratometalates (M = Cu, Ni, Zn) are available by direct synthesis from metal salts with dipotassium‐1,2‐dithiosquarate. The structural influence of the planar and nonplanar host lattice systems (BzlEt3N)2[Cu/Ni(dtsq)2] and (BzlEt3N)2[Cu/Zn(dtsq)2] on the geometrical and electronic structure of the CuII guest complex [Cu(dtsq)2]2– is studied by EPR spectroscopy. The used host lattices (BzlEt3N)2[Ni(dtsq)2] (planar) and (BzlEt3N)2[Zn(dtsq)2] (tetrahedral) are characterized by X‐ray structure analysis. (BzlEt3N)2[Ni(dtsq)2] crystallizes in the triclinic unit cell P1 with a = 9.1021(8) Å, b = 9.4190(8) Å, c = 11.0119(10) Å, α = 92.8560(10)°, β = 95.375(2)°, γ = 104.5180(10)° and Z = 1. (BzlEt3N)2[Zn(dtsq)2] crystallizes in the monoclinic unit cell C2/c with a = 21.1299(14) Å, b = 16.6641(11) Å, c = 13.8324(9) Å, β = 123.9100(10)° and Z = 4. The g and A Cu tensors in the Cu/Ni system are nearly axial symmetric (g|| = 2.122, g = 2.028; A = –159.5 · 10–4 cm–1, A = –36.9 · 10–4 cm–1). The coordination geometry of the CuII guest complex in the tetrahedral Cu/Zn system is rather distorted, which is shown by the changed g and A Cu tensor parameters (g|| = 2.143, g = 2.042; A = –103.0 · 10–4 cm–1, A ≈ –5.0 · 10–4 cm–1). The spin density distribution is discussed using EHT molecular orbital calculations.  相似文献   

2.
Bis(1,2‐diselenosquarato) Metalates A series of 1,2‐diselenosquarato metalates [M(dssq)2]2– (M = Pd2+, Pt2+, Cu2+, Ni2+, Zn2+, Cd2+, Pb2+, VO2+) was available by direct synthesis from the appropriate metal salt with dipotassium 1,2‐diselenosquarate in deoxygenized water under an argon athmosphere. The copper(II)complex, [Cu(dssq)2]2–, and the oxovanadium(IV)complex, [VO(dssq)2]2–, were identified in solution by EPR spectroscopy (parameters: [Cu(dssq)2]2–: g0 = 2.073; a = –76.0 · 10–4 cm–1, a = 47.0 · 10–4 cm–1; [VO(dssq)2]2–: g0 = 1.986; a = 74.9 · 10–4 cm–1). The complexes bis(tetraphenylphosphonium)[bis(1,2‐diselenosquarato)nickelate(II)], (Ph4P)2[Ni(dssq)2], and bis(tetraphenylphosphonium)[bis(1,2‐diselenosquarato)zincate(II)], (Ph4P)2[Zn(dssq)2], were characterized by X‐ray structure analysis. The square‐planar NiII complex (Ph4P)2[Ni(dssq)2] crystallizes in the monoclinic spacegroup P21/n with the unit cell parameters a = 11.1472(8) Å, b = 15.331(1) Å, c = 14.783(1) Å, β = 94.441(1)° and Z = 2. The ZnII‐complex (Ph4P)2[Zn(dssq)2] is tetrahedral coordinated and crystallizes in the monoclinic spacegroup P21/c with the unit cell parameters a = 9.4238(1) Å, b = 18.5823(3) Å, c = 29.5309(5) Å, β = 96.763(1)° and Z = 4.  相似文献   

3.
The reaction of 4‐amino‐6‐methyl‐1,2,4‐triazin‐thione‐5‐one (H2AMTTO, 1 ) with 4‐chlorobenzaldhyde led to the corresponding iminic compound {(4‐[(4‐chloro‐benzylidene)‐amino]‐6‐methyl‐3‐thioxo[1,2,4]‐triazin‐3,4‐dihydro(2H)‐5‐one), CAMTTO ( 2 ). Treatment of 2 with copper(I) chloride in chloroform gave the dimeric complex [{(CAMTTO)2CuCl}2]·2CHCl3 ( 3 ). Treatment of 2 with copper(I) chloride and silver(I) nitrate in the presence of the co‐ligand triphenylphophane gave the complexes [(CAMTTO)CuCl(PPh3)2] ( 4 ) and [(CAMTTO)Ag(PPh3)2]NO3·2CHCl3 ( 5 ). All compounds have been characterized by elemental analyses, 1H NMR spectroscopy, IR spectroscopy, and partly by mass spectrometry and X‐ray diffraction studies. In addition 4 and 5 have been characterized by 31P{1H} NMR spectroscopy. Crystal data for 2 at ?80 °C: monoclinic, space group P21/c, a = 1370.3(1), b = 767.8(1), c = 1268.7(1) pm, β = 107.12(1)°, Z = 4, R1 = 0.0379; for 3 at ?80 °C: monoclinic, space group P21/c, a = 1442.6(2), b = 878.8(1), c = 2558.7(3) pm, β = 95.31(1)°, Z = 2, R1 = 0.0746; for 4 at ?80 °C: triclinic, space group , a = 1287.9(1), b = 1291.7(1), c = 1359.5(1) pm, α = 90.44(1)°, β = 94.81(1)°, γ = 107.54(1)°, Z = 2, R1 = 0.0359 and for 5 at ?80 °C: triclinic, space group , a = 1060.5(1), b = 1578.2(2), c = 1689.6(2) pm, α = 87.70(1)°, β = 86.66(1)°, γ = 76.84(1)°, Z = 2, R1 = 0.0487.  相似文献   

4.
The reaction of 2‐amino‐benzothiazole with allyl bromide resulted in a mixture of 2‐imino‐3‐allyl‐benzothiazole and 2‐imino‐3‐allyl‐benzothiazolium bromide.Using such a mixture and copper(II) chloride in acetonitrile solution in alternating‐current electrochemical synthesis crystals of the [(CuCl)C10H10SN2] ( I ) have been obtained. The same procedure, performed in ethanol solution, has led to formation of [C10H11SN2+]2[Cu2Cl4]2? ( II ). In the same manner the bromine derivative [C10H11SN2+]2[Cu2Br4]2? ( III ) has been synthesized. All three compounds were X‐ray structurally investigated. I :monoclinic space group P21/n, a = 13.789(6), b = 6.297(3), c = 13.830(6) Å, β = 112.975(4)°, V = 1105.6 (9) Å3, Z = 4 for CuCl·C10H10 SN2 composition. Compounds II and III are isomorphous and crystallize in triclinic space group. II a = 7.377(3), b = 8.506(3), c = 9.998(4) Å, α = 79.892(10)°, β = 82.704(13)°, γ = 78.206(12)°, V = 601.9(4) Å3, Z = 1. III a = 7.329(2), b = 8.766(3), c = 10.265(3) Å, α = 79.253(9)°, β = 82.625(9)°, γ = 77.963(9)°, V = 630.9(3) Å3, Z = 1. In the structure I [(CuCl)C10H10SN2] building blocks are bound into infinitive spiral‐like chains via strong N‐H..Cl hydrogen bonds. In the zwitter‐ionic II and III compounds copper and halide atoms form centrosymmetric [Cu2X4]2? anions, which are interconnected via N‐H..X hydrogen bonds into infinite butterfly‐like chains. The strongest Cu‐(C=C) π‐interaction has been observed in structure I , where copper possesses coordination number 3. Increasing copper coordination number to 4 in II as well as replacing chlorine atoms by bromine ones in III suppresses markedly this interaction.  相似文献   

5.
Mesityl‐vanadium(III)‐phenolate Complexes: Synthesis, Structure, and Reactivity Protolysis reactions of [VMes3(THF)] with ortho‐substituted phenols (2‐iso‐propyl‐(H–IPP), 2‐tert‐butyl(H–TBP), 2,4,6‐trimethylphenol (HOMes) and 2,2′biphenol (H2–Biphen) yield the partially and fully phenolate substituted complexes [VMes(OAr)2(THF)2] (OAr = IPP ( 1 ), TBP ( 2 )), [VMes2(OMes)(THF)] ( 4 ), [V(OAr)3(THF)2] (OAr = TBP ( 3 ), OMes ( 5 )), and [V2(Biphen)3(THF)4] ( 6 ). Treatment of 6 with Li2Biphen(Et2O)4 results in formation of [{Li(OEt2)}3V(Biphen)3] ( 7 ) and with MesLi complexes [{Li(THF)2}2VMes(Biphen)2] · THF ( 8 ) and [{Li(DME)}VMes2(Biphen)] ( 9 ) are formed. Reacting [VCl3(THF)3] with LiOMes in 1 : 1 to 1 : 4 ratios yields the componds [VCl3–n(OMes)n(THF)2] (n = 1 ( 5 b ), 2 ( 5 a ), 3 ( 5 )) and [{Li(DME)2}V(OMes)4] ( 5 c ), the latter showing thermochromism due to a complexation/decomplexation equilibrium of the solvated cation. The mixed ligand mesityl phenolate complexes [{Li(DME)n}{VMes2(OAr)2}] (OAr = IPP ( 10 ), TBP ( 11 ), OMes ( 12 ) (n = 2 or 3) and [{Li(DME)2}{VMes(OMes)3}] ( 15 ) are obtained by reaction of 1 , 2 , 5 a and 5 with MesLi. With [{Li(DME)2(THF)}{VMes3(IPP)}] ( 13 ) a ligand exchange product of 10 was isolated. Addition of LiOMes to [VMes3(THF)] forming [Li(THF)4][VMes3(OMes)] ( 14 ) completes the series of [Li(solv.)x][VMes4–n(OMes)n] (n = 1 to 4) complexes which have been oxidised to their corresponding neutral [VMes4–n(OMes)n] derivatives 16 to 19 by reaction with p‐chloranile. They were investigated by epr spectroscopy. The molecular structures of 1 , 3 , 5 , 5 a , 5 a – Br , 7 , 10 and 13 have been determined by X‐ray analysis. In 1 (monoclinic, C2/c, a = 29.566(3) Å, b = 14.562(2) Å, c = 15.313(1) Å, β = 100.21(1)°, Z = 8), 3 (orthorhombic, Pbcn, a = 28.119(5) Å, b = 14.549(3) Å, c = 17.784(4) Å, β = 90.00°, Z = 8), ( 5 ) (triclinic, P1, a = 8.868(1) Å, b = 14.520(3) Å, c = 14.664(3) Å, α = 111.44(1)°, β = 96.33(1)°, γ = 102.86(1)°, Z = 2), 5 a (monoclinic, P21/c, a = 20.451(2) Å, b = 8.198(1) Å, c = 15.790(2) Å, β = 103.38(1)°, Z = 4) and 5 a – Br (monoclinic, P21/c, a = 21.264(3) Å, b = 8.242(4) Å, c = 15.950(2) Å, β = 109.14(1)°, Z = 4) the vanadium atoms are coordinated trigonal bipyramidal with the THF molecules in the axial positions. The central atom in 7 (trigonal, P3c1, a = 20.500(3) Å, b = 20.500(3) Å, c = 18.658(4) Å, Z = 6) has an octahedral environment. The three Li(OEt2)+ fragments are bound bridging the biphenolate ligands. The structures of 10 (monoclinic, P21/c, a = 16.894(3) Å, b = 12.181(2) Å, c = 25.180(3) Å, β = 91.52(1)°, Z = 4) and 13 (orthorhombic, Pna21, a = 16.152(4) Å, b = 17.293(6) Å, c = 16.530(7) Å, Z = 4) are characterised by separated ions with tetrahedrally coordinated vanadate(III) anions and the lithium cations being the centres of octahedral and trigonal bipyramidal solvent environments, respectively.  相似文献   

6.
Caesiumchloropalladate(II)‐hydrates – Two New Compounds with Condensed [Pd2Cl6] Groups We were able to synthesize two caesiumchloropalladate(II)‐hydrates in the CsCl/PdCl2/H2O system by hydrothermal methods. Both compounds show combination of monomeric and dimeric Pd–Cl groups. We characterized the crystal structures by single‐crystal X‐ray diffraction. Cs6Pd5Cl16 · 2 H2O ( I ) crystallizes triclinic in space group type P1 (Nr. 2) with a = 8.972(1) Å, b = 11.359(1) Å, c = 18.168(1) Å, α = 83.61(1)°, β = 76.98(1)°, γ = 76.39(1)° and Z = 2, Cs12Pd9Cl30 · 2 H2O ( II ) monoclinic, space group type C2/m (No. 12) with a = 19.952(1) Å, b = 14.428(1) Å, c = 14.411(1) Å, β = 125.29(1)°, and Z = 2.  相似文献   

7.
The phosphorus‐sulfur ligand 1‐(methylthio)‐3‐(diphenylphosphino)‐propane (S‐P3) has been synthesized and characterized by 1H NMR and 13C NMR. Reactions of S‐P3 with [PdCl2(PhCN)2] afforded the complexes [PdCl2(S‐P3)] ( I ) and [PdCl2(S‐P3)2] ( II ), in which S‐P3 acts as a bidentate and monodentate ligand, respectively. Compound I crystallizes in monoclinic space group P21/n (No. 14) with cell dimensions: a = 8.589(3), b = 15.051(3), c = 17.100(3)Å, β = 102.91(2)°, V = 2154.7(9)Å3, Z = 4. Likewise, compound II crystallizes in monoclinic space group P21/n (No. 14) with a = 9.993(5), b = 8.613(4), c = 18.721(5)Å, β = 90.18(3)°, V = 1611.3(12)Å3, Z = 2. Compound II has a trans square planar configuration with only the P‐site of the ligand bonded to the palladium atom.  相似文献   

8.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

9.
Complexes of trifluoromethanesulfonates (triflates) with alkali metals Na, Rb, Cs have been prepared in the presence of various macrocyclic polyether crowns [(12‐crown‐4), (15‐crown‐5) and (18‐crown‐6)]. Depending on the combination of alkali ion with crown, the complexes include separated ion pairs [Na(12‐crown‐4)2] [SO3CF3] ( 1 ) and contact ion pairs [Na(15‐crown‐5)] [SO3CF3] ( 2 ), [Rb(18‐crown‐6)] [SO3CF3] ( 3 ), and [Cs(18‐crown‐6)] [SO3CF3] ( 4 ), in which the triflate acts as a bidentate ligand. It is shown that the choice of crown ether is of paramount importance in determining the solid‐state structural outcome. The complex resulting from the pairing of crown ether ( 1 ) develops, when the crown ether is too small in relation to the alkali ion radius. When the cavity size of the crown ether is matched with the alkali ion radius, simple monomeric structures are identified in 2 , 3 and 4 . The title compounds crystallize in the monoclinic crystal system: 1 : space group P2/c with a = 9.942(3), b = 11.014(2), c = 10.801(3) Å, β = 97.30(2)°, V = 1173.1(4) Å3, Z = 2, R1 = 0.0812, wR2 = 0.1133: 2 : space group P21/m with a = 7.949(2), b = 12.063(3), c = 9.094(2) Å, β = 105.98(2)°, V = 838.3(4) Å3, Z = 2, R1 = 0.0869, wR2 = 0.1035: 3 : space group P21/c with a = 12.847(5), b = 8.448(2), c = 22.272(6) Å, β = 122.90(3)°, V = 2029.5(1) Å3, Z = 4, R1 = 0.0684, wR2 = 0.1044: 4 : space group P21/n with a = 12.871(3), b = 8.359(1), c = 19.019(4) Å, β = 92.61(2)°, V = 2044.2(6) Å3, Z = 4, R1 = 0.0621, wR2 = 0.0979.  相似文献   

10.
Two new trans‐disubstituted cyclam ligands; 1,8‐di(6‐hydroxymethylpyridin‐2‐ylmethyl)‐1,4,8,11‐tetra‐azacyclotetradecane ( 5 ) and 1,8‐dimethyl‐4, 11‐di(6‐hydroxymethylpyridin‐2‐ylmethyl)‐1,4,8,11 ‐tetraaza‐cyclotetradecane ( 6 ); have been synthesized and characterized. The crystal structures of ligand 6 and its Ni(II) and Co(II) complexes have been determined. Crystal data are given for 6 , space group, P21/c, a = 11.095 (6) Å, b = 9.467 (5) Å, c = 13.283 (8) Å; β = 106.95 (5)°, Z = 2, R = 0.0715; for [Ni 6 ](C104)2, space group P21/c, a = 9.4848 (14) Å, b = 33.941(6) Å, c = 9.793(2) A, β = 95.264(14)°, Z = 4, R = 0.0567; for [Co 6 ](C104)2, space group, P21/c, a = 9.440 (6) Å, b = 33.848 (13) Å, c = 9.820 (3) Å, β = 95.16(3)°, Z = 4, R = 0.0718. In both complexes, the metal atoms are six‐coordinate with only one of the pendants interacting with the central metal atom and the other pendant remaining uncoordinated.  相似文献   

11.
The ligand N,N‐dimethyl(N′‐trimethylsilyl)ethane‐1,2‐diamine (HL) was treated with ZnEt2 in varying stoichiometric ratios to synthesize [EtZnL]2 and [ZnL2] complexes. Crystal data: [EtZnL]2, monoclinic, P21/n, a = 10.0149(5) Å, b = 8.0296(3) Å, c = 16.1689(8) Å, β = 91.715(2)°. [ZnL2], monoclinic, P21/n, a = 8.8457(3) Å, b = 15.4249(6) Å, c = 16.0121(7) Å, β = 92.656(1)°. The former complex is an amido nitrogen bridged dimer with distorted tetrahedral stereochemistry of the zinc atom and the latter is a distorted tetrahedral monomer based on amide/amine chelation.  相似文献   

12.
Hydrothermal syntheses of single crystals of rare earth iodates, by decomposition of the corresponding periodate, are presented. This appears to be a generic method for making rare earth iodate crystals in a short period of time. Single crystal X‐ray diffraction structures of the four title compounds are presented. Sc(IO3)3: Space group R3, Z = 6, lattice dimensions at 100 K; a = b = 9.738(1), c = 13.938(1) Å; R1 = 0.0383. Y(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 100 K: a = 7.3529(2), b = 10.5112(4), c = 7.0282(2) Å, α = 105.177(1)°, β = 109.814(1)°, γ = 95.179(1)°; R1 = 0.0421. La(IO3)3 · ? H2O: Space group Pn, Z = 2, lattice dimensions at 100 K: a = 7.219(2), b = 11.139(4), c = 10.708(3) Å, β = 91.86(1)°; R1 = 0.0733. Lu(IO3)3 · 2 H2O: Space group P1, Z = 2, lattice dimensions at 120 K: a = 7.2652(9), b = 7.4458(2), c = 9.3030(3) Å, α = 79.504(1)°, β = 84.755(1)°, γ = 71.676(2)°; R1 = 0.0349.  相似文献   

13.
Interaction of copper(II) chloride with 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine leads to formation of copper(II) complex [CuCl2·2C3N3(OC3H5)3] ( I ). Electrochemical reduction of I produces the mixed‐valence CuI, II π, σ‐complex of [Cu7Cl8·2C3N3(OC3H5)3] ( II ). Final reduction produces [Cu8Cl8·2C3N3(OC3H5)3]·2C2H5OH copper(I) π‐complex ( III ). Low‐temperature X‐ray structure investigation of all three compounds has been performed: I : space group P1¯, a = 8.9565(6), b = 9.0114(6), c = 9.7291(7) Å, α = 64.873(7), β = 80.661(6), γ = 89.131(6)°, V = 700.2(2) Å3, Z = 1, R = 0.0302 for 2893 reflections. II : space group P1¯, a = 11.698(2), b = 11.162(1), c = 8.106(1) Å, α = 93.635(9), β = 84.24(1), γ = 89.395(8)°, V = 962.0(5) Å3, Z = 1, R = 0.0465 for 6111 reflections. III : space group P1¯, a = 8.7853(9), b = 10.3602(9), c = 12.851(1) Å, α = 99.351(8), β = 105.516(9), γ = 89.395(8), V = 1111.4(4) Å3, Z = 1, R = 0.0454 for 4470 reflections. Structure of I contains isolated [CuCl2·2C3N3(OC3H5)3] units. The isolated fragment of I fulfils in the structure of II bridging function connecting two hexagonal prismatic‐like cores Cu6Cl6, whereas isolated Cu6Cl6(CuCl)2 prismatic derivative appears in III . Coordination behaviour of the 2, 4, 6‐triallyloxy‐1, 3, 5‐triazine moiety is different in all the compounds. In I ligand moiety binds to the only copper(II) atom through the nitrogen atom of the triazine ring. In II ligand is coordinated to the CuII‐atom through the N atom and to two CuI ones through the two allylic groups. In III all allylic groups and nitrogen atom are coordinated by four metal centers. The presence of three allyl arms promotes an acting in II and III structures the bridging function of the ligand moiety. On the other hand, space separation of allyl groups enables a formation of large complicated inorganic clusters.  相似文献   

14.
Condensation of aminoalcohols with 2‐HC(O)C6H4B(OH)2 afforded the macrocyclic compounds 1–7 with an OBOBO structural unit. Crystals of 1 were triclinic, space group P‐1, a = 9.9818(12) Å, b = 12.8302(15) Å, c = 13.1663(15) Å, α = 105.503(2)°, β = 94.860(2)°, γ = 92.585(2)°, Z = 2.  相似文献   

15.
18‐crown‐6(18‐C‐6) complexes with K2[M(SeCN)4] (M = Pd, Pt): [K(18‐C‐6)]2[Pd(SeCN)4] (H2O) ( 1 ) and [K(18‐C‐6)]2[Pt(SeCN)4](H2O) ( 2 ) have been isolated and characterized by elemental analysis, IR spectroscopy and single crystal X‐ray analysis. The complexes crystallize in the monoclinic space group P21/n with cell dimensions: 1 : a = 1.1159(3) Å, b = 1.2397(3) Å, c = 1.6003(4) Å, β = 92.798(4)°, V = 2.2111(8) Å3, Z = 2, F(000) = 1140, R1 = 0.0418, wR2 = 0.0932 and 2 : a = 1.1167(3) Å, b = 1.2394(3) Å, c = 1.5968(4) Å, β = 92.945(4)°, V = 2.2071(9) Å3, Z = 2, F(000) = 1204, R1 = 0.0341, wR2 = 0.0745. Both complexes form one‐dimensionally linked chains of [K(18‐C‐6)]+ cations and [M(SeCN)4]2— (M = Pd, Pt) anions bridged by K‐O‐K interactions between adjacent [K(18‐C‐6)]+ units.  相似文献   

16.
The reaction of 4‐amino‐1,2,4‐Δ2‐triazoline‐5‐thione (ATT, 1 ) with AgNO3 in methanol led to the complex [Ag(ATT)2]NO3 ( 2 ). 2 was characterized by elemental analyses, 1H NMR, IR, and Raman spectroscopy as well as single‐crystal X‐ray diffraction. The molecular structure of 1 was also determined by single crystal X‐ray analysis. Crystal data for 1 at ?80 C: space group C2/c with a = 2107.4(2), b = 1425.1(1), c = 688.4(1) pm, β = 104.55(1)°, Z = 16, R1 = 0.0514, crystal data for 2 at ?80 °C: space group P21/c with a = 675.7(1), b = 1321.1(1), c = 1311.2(1) pm, β = 90.03(1)°, Z = 4, R1 = 0.0437.  相似文献   

17.
The reaction of Zn(NO3)2‐6H2O, NH4SCN and bpp (bpp = 1,3‐bis(4‐pyridyl)propane) in CH3OH afforded the complex [Zn(NCS)2(bpp)]n, 1 , while the reaction of Zn(ClO4)2‐6H2O and bpp in CH3OH afforded the complex [Zn(ClO4)2(bpp)2]n, 2 . Both complexes have been characterized by spectroscopic methods and their structures have been determined by X‐ray crystallography. Crystal data for 1 : Orthorhombic, space group P21212, a= 12.857(6), b = 14.822(7), c = 4.820(2) Å, β = 90°, V = 918.5(8) Å3, Z = 2 with final residuals R1 = 0.0747 and wR2 = 0.1657. Crystal data for 2 : Tetragonal, space group I4/mcm, a = 11.612(1), b = 11.612(1), c = 23.247(9) Å, β = 90°, V = 3135(1) Å3, Z = 4 with final residuals R1 = 0.0523 and wR2 = 0.1064. The coordination polymers display a variety of structural architectures, ranging from zigzag chains ( 1 ) and one‐dimensional channel‐type architectures ( 2 ). The effects of the orientation of the nitrogen atom in the pyridine rings on the resultant structures are discussed.  相似文献   

18.
On Chalcogenolates. 161. Reaction of 1,2-Ethanedithiolates with Carbon Disulfides. 3. Crystal and Molecular Structure of 1,2-Ethane-bis(methyltrithiocarbonate) The title compound H3CS? CS? SCH2CH2S? CS? SCH3 crystallizes with Z = 2 in the triclinic space group P1 with cell dimensions a = 6.769(1) Å, b = 8,334(2) Å, c = 11.222(1) Å, α = 80.93(1)°, β = 72.01(1)°, γ = 78.58(2)°. The crystal structure has been determined from single crystal X-ray data measured at ?40°C and refined to a conventional R of 0.035 for 2004 independent reflections (Rw = 0.042). The structure consists of isolated molecules, which are linked together by weak interaction forces. The S? CS? S groups are plane.  相似文献   

19.
In this paper we report on the potential dependent electrocrystallization of [Ag(4,4′‐dimethyl‐2,2′‐bipyridine)2(NO3)2] ( 1 ) and Ag(4,4′‐dimethyl‐2,2′‐bipyridine)(NO3)2 ( 2 ) from the same electrolytic bath. Thus it has been shown for the first time that the coordination number of silver ion to ligands can be tuned by the electrocrystallization potential. The single crystal structure analysis [ 1 : C2/c, a = 18.6308(15), b = 14.5708(12), c = 11.5867(10) Å, β = 126.5910(10)°, Z = 4, R = 3.9 %] [ 2 : P21/c, a = 8.5865(11) b = 11.0157(14) c = 16.4554(10) Å, β = 111.102(10), Z = 4 , R = 3.5 %] show divalent silver to be in an approximately square planar surrounding. Both complexes are paramagnetic following Curie's law with magnetic moments of 1.86 μB and 1.72 μB respectively.  相似文献   

20.
The η2‐thio‐indium complexes [In(η2‐thio)3] (thio = S2CNC5H10, 2 ; SNC4H4, (pyridine‐2‐thionate, pyS, 3 ) and [In(η2‐pyS)22‐acac)], 4 , (acac: acetylacetonate) are prepared by reacting the tris(η2‐acac)indium complex [In(η2‐acac)3], 1 with HS2CNC5H10, pySH, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively. All of these complexes are identified by spectroscopic methods and complexes 2 and 3 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 : space group, C2/c with a = 13.5489(8) Å, b = 12.1821(7) Å, c = 16.0893(10) Å, β = 101.654(1)°, V = 2600.9(3) Å3, and Z = 4. The structure was refined to R = 0.033 and Rw = 0.086; Crystal data for 3 : space group, P21 with a = 8.8064 (6) Å, b = 11.7047 (8) Å, c = 9.4046 (7) Å, β = 114.78 (1)°, V = 880.13(11) Å3, and Z = 2. The structure was refined to R = 0.030 and Rw = 0.061. The geometry around the metal atom of the two complexes is a trigonal prismatic coordination. The piperidinyldithiocarbamate and pyridine‐2‐thionate ligands, respectively, coordinate to the indium metal center through the two sulfur atoms and one sulfur and one nitrogen atoms, respectively. The short C‐N bond length in the range of 1.322(4)–1.381(6) Å in 2 and C‐S bond length in the range of 1.715(2)–1.753(6) Å in 2 and 3 , respectively, indicate considerable partial double bond character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号