首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A pure dielectric quantum crystal subjected to an external mechanical force is described by non-equilibrium Green’s functions. In equilibrium the leading approximation leads to the definition of elementary excitations, the phonons in the renormalized harmonic approximation. Their temperature dependent energies are to be determined as solutions of an integral equation. For hydrodynamic disturbances a generalized transport equation for a phonon number density is derived. A similar approximation for the spectral function yields an integral equation for space and time dependent quasiparticle energies which are expressed as functionals of the displacement field and the phonon distribution. The Boltzmann equation for the latter includes the quasi-particle interaction.  相似文献   

2.
本文从超导体中准粒子和声子的动力学方程及序参量方程出发得到了超导体流体动力学方程,从理论上证明了出现准粒子从浓度小的区域向浓度大的区域反常扩散的可能性以及对于短波涨落的稳定项。 关键词:  相似文献   

3.
Michio Tokuyama 《Physica A》1980,102(3):399-430
A new method of finding nonlinear Langevin type equations of motion for relevant macrovariables and the corresponding master equation for systems far from thermal equilibrium is presented by generalizing the time-convolutionless formalism proposed previously for equilibrium hamiltoian systems by Tokuyama and Mori. The Langevin type equation consists of a fluctuating force, and the nonlinear drift coefficients which are always identical to those of the master equation. A simple formula which relates the drift coefficients to the time correlation of the fluctuating forces is derived. This is a generalization of the fluctuation-dissipation theorem of the second kind in equilibrium systems and is valid not only for transport phenomena due to internal fluctuations but also for transport phenomena due to externally-driven fluctuations. A new cumulant expansion of the master equation is also obtained. The conditions under which a Langevin and a Fokker-Planck equation of a generalized type for non-equilibrium open systems can be derived are clarified.The theory is illustrated by studying hydrodynamic fluctuations near the Rayleigh-Bénard instability. The effects of two kinds of fluctuations, internal fluctuations of irrelevant macrovariables and external (thermal) noises, on the convective instability are investigated. A stochastic Ginzburg-Landau type equation for the order parameter and the corresponding nonlinear Fokker-Planck equation are derived.  相似文献   

4.
The paper studies nonlinear hydrodynamic fluctuations by the methods of nonequilibrium statistical mechanics. The generalized Fokker-Planck equation for the distribution function of coarse-grained densities of conserved quantities is derived from the Liouville equation and then is investigated by using the gradient expansions in the flux correlation matrix. We have obtained the functional-differential Fokker-Planck equation describing the nonlinear hydrodynamic fluctuations in spatially nonuniform systems to second order in gradients of coarse-grained fluctuating fields. An outline of the derivation of Fokker-Planck equations containing the Burnett terms is also given. The explicit coordinate representation for the hydrodynamic Fokker-Planck equation is discussed in the case of one-component simple fluid. The general scheme of a change of coarse-grained functional variables is developed for hydrodynamic Fokker-Planck equations. The corresponding transformation rules are found for “drift” terms, “diffusion coefficients” and thermodynamic forces. The dynamical equations and stationary conditions for averages of functions (functionals) of hydrodynamic fields are discussed by using the Fokker-Planck operators acting on such functions. The explicit form of these operators are found for various sets of fluctuating fields. As an application of the formalism the calculation of the stationary correlation functions is presented for a simple nonequilibrium steady state.  相似文献   

5.
V.G. Morozov 《Annals of Physics》2009,324(6):1261-1302
Many-particle QED is applied to kinetic theory of radiative processes in many-component plasmas with relativistic electrons and non-relativistic heavy particles. Within the framework of non-equilibrium Green’s function technique, transport and mass-shell equations for fluctuations of the electromagnetic field are obtained. We show that the transverse field correlation functions can be decomposed into sharply peaked (non-Lorentzian) parts that describe resonant (propagating) photons and off-shell parts corresponding to virtual photons in plasmas. Analogous decompositions are found for the longitudinal field correlation functions and the correlation functions of relativistic electrons. As a novel result a kinetic equation for the resonant photons with a finite spectral width is derived. The off-shell parts of the particle and field correlation functions are shown to be essential to calculate the local radiating power in relativistic plasmas and recover the results of vacuum QED. The influence of plasma effects and collisional broadening of the relativistic quasiparticle spectral function on radiative processes is discussed.  相似文献   

6.
7.
Kinetic equations for quasiparticle excitations in ideal crystals, known from solid state physics, are generalized to the case of material bodies the crystal structure of which is distorted by the existence of continuously distributed defects. Distribution of defects is described by a field of local base vectors of a primitive crystal lattice. The form of conservation laws implied by such kinetic equations is discussed using the example of energy balance in a phonon system. It is shown that energy balance can be written either with respect to lattice connection or with respect to the Euclidean connection, having a vanishing source term in both cases. Transition from one version to another involves a redefinition of the heat flux vector.  相似文献   

8.
W. Hess  R. Klein 《物理学进展》2013,62(2):173-283
A generalized hydrodynamic theory is developed for systems of interacting Brownian particles on the basis of a Fokker-Planck equation. General results are derived for correlation functions, frequency- and wave-vector dependent transport coefficients. Explicit expressions for moments, cumulants and the hydrodynamic limits of the transport coefficients are given. For the special cases of overdamped systems with and without hydrodynamic interaction the general results are simplified. As an example for the application of this approach the system of charged spherical polystyrene spheres in aqueous solution is treated in detail. The generalized transport functions are evaluated in mode-mode coupling approximation and detailed numerical results are presented for various collective and single-particle properties. Finally, the relationship to a corresponding Smoluchowski approach is discussed.  相似文献   

9.
Hydrodynamic excitations in lattice gas cellular automata are described in terms of equilibrium time correlation functions for the local conserved variables. For large space and time scales the linearized hydrodynamic equations are obtained to Navier-Stokes order. Exact expressions for the associated susceptibilities and transport coefficients are identified in terms of correlation functions. The general form of the time correlation functions for conserved densities in the hydrodynamic limit is given and illustrated by some examples suitable for comparison with computer simulation. The transport coefficients are related to time correlation functions for the conserved fluxes in a way analogous to the Green-Kubo expressions for continuous fluids. The general results are applied for a one-component fluid and several types of binary diffusion. Also discussed are the effects of unphysical slow modes such as staggered particle or momentum densities.  相似文献   

10.
A phenomenological method is presented to obtain the hydrodynamic equations for a multicomponent, isotropic, non-reactive fluid to any order in the spatial inhomogeneities. Two assumptions are made, the existence of a local equilibrium state and a non-linear dependence of the fluxes on the thermodynamic forces. In particular, the generalized form for the diffusion equation, to fourth order in the gradients, is obtained. Also, we derive the hydrodynamic equations for a binary mixture in a non-linear Burnett regime. The comparison of our results with others given in the literature and, in particular with those recently derived using the time-dependent correlation function formalism, is given. Finally some remarks are made in connection with the question about the existence of the transport coefficients beyond the Navier-Stokes regime.  相似文献   

11.
A general kinetic equation for the differential density of fast particles moving in a medium in an external field is derived on the basis of the continuity equation in phase space. An equation is written for the differential flux in the case of fixed target particles. This equation is used to derive equations for fast electrons; account is taken of the coupling of energy-loss and scattering events in an electric field for various particular problems analogous to those studied in the theory of electron transport in the absence of a field. The kinetic equations are used to analyze the conditions governing accelerated motion of electrons in a dielectric in an external electric field in the continuous-deceleration approximation. Account is taken of fluctuations in the energy loss and of multiple scattering. There are two energy ranges of particles moving in a dielectric in which accelerated motion can occur; in the case of an electron beam with a continuous energy spectrum, this acceleration would be accompanied by monochromatization of the beam.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 7–12, February, 1972.  相似文献   

12.
《Physics letters. A》1998,240(3):160-166
A kinetic equation which combines the quasiparticle drift of Landau's equation with a dissipation governed by a nonlocal and noninstant scattering integral in the spirit of Snider's equation for gases is derived. Consequent balance equations for the density, momentum and energy include quasiparticle contributions and the second-order quantum virial corrections. The medium effects on binary collisions are shown to mediate the latent heat, i.e. an energy conversion between correlation and thermal energy. An implementation to heavy ion collisions is discussed.  相似文献   

13.
X.F. Li 《哲学杂志》2013,93(13):1500-1519
Elastohydrodynamic problems of decagonal quasicrystals are analysed where the phonon field obeys wave equation and the phason field obeys diffusive wave equation. Basic equations are solved in the quasiperiodic plane and periodic plane, respectively. Final governing equations of dynamic behaviours of decagonal quasicrystals are obtained. A general solution is derived in terms of introduced three auxiliary functions, where two individually satisfy a fourth-order partial differential equation and one satisfies a second-order hyperbolic diffusion equation. Using the derived governing equations, elastic waves propagating in the quasiperiodic plane and a plane containing the period axis are analysed. Secular equations are obtained. It is found that differing from conventional crystals, at least four branches of elastic waves exist when the phonon–phason coupling is present. Moreover, acoustic waves have attenuation during wave propagation. Phason fluctuations exhibit exponential decaying behaviour due to kinematic viscosity and damping. The phase speeds are isotropic in the quasiperiodic plane and anisotropic in a plane with the periodic axis. The section of the slowness surfaces is plotted.  相似文献   

14.
The nonlinear hydrodynamic equations of motion for simple solids are derived. They are shown to be invariant under arbitrary homogeneous displacements, rotations, and deformations of the reference lattice. This leads to transport equations that are independent of a reference state. Galilean invariance is investigated too.  相似文献   

15.
W. Hess  R. Klein 《Physica A》1978,94(1):71-90
To describe dynamical properties of a system of interacting Brownian particles stochastic transport equations are derived for the positions of the particles and their concentration fluctuations. This is achieved by an expansion of the Langevin equation for the momenta in terms of the reciprocal of the friction coefficient. As a by-product this procedure gives a new derivation of the generalized Smoluchowski equation. Using a local equilibrium approximation for the configurational distribution function a mode-mode coupling equation is derived for the local concentration, which still depends on the random forces of the solvent. For the interaction free case the relation to the ordinary diffusion approach is established.  相似文献   

16.
The dynamics of interacting quantized vortex filaments in a rotating Bose–Einstein condensate existing in the Thomas–Fermi regime at zero temperature and obeying the Gross–Pitaevskii equation has been considered in the hydrodynamic “nonelastic” approximation. A noncanonical Hamilton equation of motion for the macroscopically averaged vorticity has been derived for a smoothly inhomogeneous array of filaments (vortex lattice) taking into account spatial nonuniformity of the equilibrium density of the condensate, which is determined by the trap potential. The minimum of the corresponding Hamiltonian describes the static configuration of the deformed vortex lattice against the preset density background. The condition of minimum can be reduced to a nonlinear second-order partial differential vector equation for which some exact and approximate solutions are obtained. It has been shown that if the condensate density has an anisotropic Gaussian profile, the equation of motion for the averaged vorticity has solutions in the form of a vector exhibiting a nontrivial time dependence, but homogeneous in space. An integral representation has also been obtained for the matrix Green function that determines the nonlocal Hamiltonian of a system of several quantized vortices of an arbitrary shape in a Bose–Einstein condensate with the Gaussian density. In particular, if all filaments are straight and oriented along one of the principal axes of the ellipsoid, we have a finitedimensional reduction that can describe the dynamics of the system of pointlike vortices against an inhomogeneous background. A simple approximate expression is proposed for the 2D Green function with an arbitrary density profile and is compared numerically with the exact result in the Gaussian case. The corresponding approximate equations of motion, describing the long-wavelength dynamics of interacting vortex filaments in condensates with a density depending only on transverse coordinates, have been derived.  相似文献   

17.
In this paper, the hydrodynamic equations and the associated transport coefficients are derived for a simple binary fluid from molecular considerations. This is a generalization of the methods of Felderhof and Oppenheim and of Selwyn to multicomponent systems. A linear response formalism is used to describe the relaxation of the binary system from an initial nonequilibrium state. Explicit molecular expressions are given for the transport coefficients in terms of time correlation functions of generalized current densities. These densities have the useful property of not containing a conserved part. The correlation functions are then related to a set of phenomenological coefficients in the theory of nonequilibrium thermodynamics. This explicit identification enables one to relate the correlation functions to experimentally measured transport coefficients.Supported by the National Science Foundation.  相似文献   

18.
We present a finite difference method to solve a new type of nonlocal hydrodynamic equations that arise in the theory of spatially inhomogeneous Bloch oscillations in semiconductor superlattices. The hydrodynamic equations describe the evolution of the electron density, electric field and the complex amplitude of the Bloch oscillations for the electron current density and the mean energy density. These equations contain averages over the Bloch phase which are integrals of the unknown electric field and are derived by singular perturbation methods. Among the solutions of the hydrodynamic equations, at a 70 K lattice temperature, there are spatially inhomogeneous Bloch oscillations coexisting with moving electric field domains and Gunn-type oscillations of the current. At higher temperature (300 K) only Bloch oscillations remain. These novel solutions are found for restitution coefficients in a narrow interval below their critical values and disappear for larger values. We use an efficient numerical method based on an implicit second-order finite difference scheme for both the electric field equation (of drift-diffusion type) and the parabolic equation for the complex amplitude. Double integrals appearing in the nonlocal hydrodynamic equations are calculated by means of expansions in modified Bessel functions. We use numerical simulations to ascertain the convergence of the method. If the complex amplitude equation is solved using a first order scheme for restitution coefficients near their critical values, a spurious convection arises that annihilates the complex amplitude in the part of the superlattice that is closer to the cathode. This numerical artifact disappears if the space step is appropriately reduced or we use the second-order numerical scheme.  相似文献   

19.
We present results of first principles total energy calculations of the structure, electronic and lattice dynamics for beryllium semiboride and its three ternary alloys using generalized gradient and local density approximations under the framework of density functional theory. The generalized gradient approximation is used for all compounds except MgBeB using the Perdew-Burke-Ernzehorf exchange correlation functional while local density approximations use the Perdew-Zunger ultrasoft exchange correlation functional. The calculated ground state structural parameters are in good agreement with those of experimental and previous theoretical studies. The electronic band structure calculations show that Be2B may transform to a semiconductor after Al substitution. A linear response approach to density functional theory is used to calculate phonon dispersion curves and vibrational density of states. The phonon dispersion curves of Be2B and AlBeB are positive indicating a dynamical stablility of the structure for these compounds. The phonon dispersion curves of NaBeB and MgBeB show the imaginary phonons throughout the Brillouin zone, which confirms dynamical instability as indicated in band structures for these alloys. We also present the partial phonon density of states for different species of Be2B and AlBeB to bring out the details of the participation of different atoms in the total phonon density of state, particularly the role played by Al atom. The first time calculated phonon properties are clearly able to bring out the significant effect of isoelectronic substitution in Be2B.  相似文献   

20.
A general stochastic model for the diffusion of a quantum particle on a fluctuating lattice is considered and several exact results useful in the calculation of transport properties are given. First, we derive a new type of integral equation for the density operator using a time-dependent projection operator and disentangling the stochastic, not the deterministic part of the motion in contrast to previous treatments. The mean square displacement is then expressed by the kernel of this equation in the case of diagonal fluctuations. We obtain an equation of motion for this kernel similar in structure to equations known from Green's function theory and containing a self-energy like quantity. Finally, two general statements concerning the exact solution of correlated models are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号