首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Density functional theory calculations were carried out to characterize a series of transition-metal-doped aluminum hydrides, forming TMAl(n)H(2n) and TMAl(n)H(2n+1) (TM = Sc, Ti, V; n = 3,4), in either charged or neutral form. A new electron-counting rule for these clusters was formulated as PSEN (paired skeleton electron number) = 4n, which can characterize both closed-shell and open-shell clusters. On the basis of this electron-counting rule, the superatomic clusters such as TiAl(4)H(9) and TiAl(3)H(6) were identified and can be used to assemble supramolecular structures. Electronic structure analysis showed that three-centered TM-H-Al bonds largely contributed to the structural stability. Also, the spin state of a wide range of clusters in their ground state can be predicted by the electron-counting rule.  相似文献   

2.
The supramolecular chemistry of acyclic oligopyrrole derivatives mainly reported by the author’s group in the last four years has been summarized in this review. The author has demonstrated the “first step” to construct the new materials and concepts based on the new molecular systems consisting of pyrrole rings, which form the complexes, assemblies, and organized structures, by using noncovalent interactions such as metal coordination, hydrogen bonding, and π–π interaction. Acyclic π-conjugated oligopyrroles have exhibited not only host–guest binding behaviors in solutions but also the formation of, for example, (i) metal coordination polymers to give emissive colloidal spheres, (ii) solid-state assemblies of acyclic π-conjugated anion receptors and their anion complexes, (iii) anion-responsive supramolecular gels from the receptors with aliphatic chains, and (iv) solvent-assisted organized structures like vesicles derived from amphiphilic anion receptors.  相似文献   

3.
The crystal architectures of 5-ferrocenylpyrazole (1) and its metal complexes were investigated. Compound 1 can form non-solvated and chloroform-solvated crystals. In both cases, 1 forms a zigzag one-dimensional architecture via NH?N hydrogen bonds. The hydrogen bond exhibits a twofold disorder, which was shown to be static by solid-state 13C NMR. In the solvated crystal, the chloroform is released at 415 K, associated with melting of the crystal. The reaction of 1 with metal salts provided metal-centered ferrocenyl clusters [Zn(NO3)2(1)4] (4), [Co(NO3)2(1)4] (5), [CoCl2(1)4] (6), [Zn(NCS)2(1)2] (7), cis-[Pt(NH3)2(1)2](PF6)2 (8), and trans-[Pt(NH3)2(1)4](PF6)2 (9). In all of these complexes, 1 acts as a monodentate ligand. In 4, 5, and 7, the multinuclear units are joined via hydrogen bonds to form supramolecular chains. Two polymorphs were found for the crystals of 4. Both are composed of the same hydrogen-bonded chains, but their arrangements are different. 5-Ferrocenyl-1-tritylpyrazole (2) and 4-ferrocenyl-1-methylpyrazole (3) were also crystallographically characterized.  相似文献   

4.
Gold, palladium and platinum complexes with an unusual isocyanide ligand containing a carboxylic acid function, [AuCl(CNC(6)H(4)COOH)], cis-[MI(2)(CNC(6)H(4)COOH)(2)] and trans-[MI(2)(CNC(6)H(4)COOH)(2)] (M = Pd, Pt) have been isolated. The carboxylic acid group of the coordinated isocyanide acts as a hydrogen donor for hydrogen-bonding and three series of stable hydrogen-bonded liquid crystalline metal complexes have been prepared with decyloxystilbazole. Although all the metal acid derivatives used are not mesomorphic, and decyloxystilbazole only shows an ordered Smectic E phase, four out of the five hydrogen-bonded decyloxystilbazole complexes studied display enantiotropic smectic A or nematic mesophases. The single crystal X-ray diffraction structure of trans-[PdI(2)(CNC(6)H(4)COOH)(2)].C(4)H(8)O(2) has been determined and confirms the formation of a supramolecular array in the solid state supported by hydrogen-bonding.  相似文献   

5.
Employing guided-ion-beam mass spectrometry, we identified a series of positively charged stoichiometric zirconium oxide clusters that exhibit enhanced activity and selectivity for three oxidation reactions of widespread chemical importance. Density functional theory calculations reveal that these clusters all contain the same active site consisting of a radical oxygen center with an elongated zirconium-oxygen bond. Calculated energy profiles demonstrate that each oxidation reaction is highly favorable energetically and involves easily surmountable barriers. Furthermore, the active stoichiometric clusters may be regenerated by reacting oxygen-deficient clusters with a strong oxidizer. This indicates that these species may promote multiple cycles of oxidation reactions and, therefore, exhibit true catalytic behavior. The stoichiometric clusters, having structures that resemble specific sites in bulk zirconia, are promising candidates for potential incorporation into a cluster assembled catalyst material.  相似文献   

6.
Cyclodextrin cups have been employed to build supramolecular systems consisting of metal and organic photoactive/redox-active components; the photoinduced communication between redox-active units assembled in water via noncovalent interactions is established. The functionalization of a beta-cyclodextrin with a terpyridine unit, ttp-beta-CD, is achieved by protection of all but one of the hydroxyl groups by methylation and attachment of the ttp unit on the free primary hydroxyl group. The metalloreceptors [(beta-CD-ttp)Ru(ttp)][PF(6)](2), [(beta-CD-ttp)Ru(tpy)][PF(6)](2), and [Ru(beta-CD-ttp)(2)][PF(6)](2) are synthesized and fully characterized. The [(beta-CD-ttp)Ru(ttp)][PF(6)](2) metalloreceptor exhibits luminescence in water, centered at 640 nm, from the (3)MLCT state with a lifetime of 1.9 ns and a quantum yield of Phi = 4.1 x 10(-)(5). Addition of redox-active quinone guests AQS, AQC, and BQ to an aqueous solution of [(beta-CD-ttp)Ru(ttp)](2+) results in quenching of the luminescence up to 40%, 20%, and 25%, respectively. Measurement of the binding strength indicates that, in saturation conditions, 85% for AQS and 77% for AQC are bound. The luminescence quenching is attributed to an intercomponent electron transfer from the appended ruthenium center to the quinone guest inside the cavity. Control experiments demonstrate no bimolecular quenching at these conditions. A photoactive osmium metalloguest, [Os(biptpy)(tpy)][PF(6)], is designed with a biphenyl hydrophobic tail for insertion in the cyclodextrin cavity. The complex is luminescent at room temperature with an emission band maximum at 730 nm and a lifetime of 116 ns. The osmium(III) species are formed for the study of photoinduced electron transfer upon their assembly with the ruthenium cyclodextrin, [(beta-CD-ttp)Ru(ttp)](2+). Time-resolved spectroscopy studies show a short component of 10 ps, attributed to electron transfer from Ru(II) to Os(III) giving an electron transfer rate 9.5 x 10(9) s(-)(1).  相似文献   

7.
Zn(II)-salphen complexes are readily accessible and interesting supramolecular building blocks with a large structural diversity. Higher-order supramolecular assemblies, such as molecular boxes based on a bis-Zn(II)-salphen building block and various ditopic bipyridine ligands, have been constructed by means of supramolecular, coordinative Zn(II)-N(pyr) interactions. The use of bipyridine ligands of differing sizes enables the construction of structures with predefined box diameters. The features of the 2:2 box assemblies were investigated in detail by (variable temperature) NMR spectroscopy, UV-visible spectroscopy, NMR titrations, and X-ray crystallographic studies. The spectroscopic studies reveal a high association constant for the Zn(II)-salphen-pyridyl motif, which lies in the range 10(5)-10(6) M(-1). The strong interaction between the Zn(II) center and pyridine donors was supported by PM3 calculations that showed a relatively high Lewis acid character of the metal center in the salphen complex. Titration curves monitored by UV-visible show a cooperative effect between the two bipyridine ligands upon complexation to the bis-Zn(II) template, suggesting the formation of 2:2 complexes. The crystal structures of two supramolecular boxes have been determined. In both examples such a 2:2 assembly is present in the solid state, and the box size is different because they consist of different building blocks. Interestingly, the box assemblies line up in the solid state to form porous channels that are potentially useful in a number of applications.  相似文献   

8.
The preparation of additional and useful building blocks for the construction of supramolecular entities with quadruply bonded Mo(2)(4+) units has been explored, and five new mixed-ligand complexes with three types of ligands and various basicities are reported. The ligands used were the DAniF (N,N'-di-p-anisylformamidinate) anion, the acetate anion, and neutral acetonitrile molecules. The formamidinate ligands are the least labile, and the acetonitrile molecules are the most labile. This difference as well as a relatively strong trans directing influence by the formamidinate anions in ligand substitution reactions allows designed synthesis of various mixed-ligand building blocks, including rare pairs of cis and trans isomers. The new compounds are cis-Mo(2)(DAniF)(2)(O(2)CCH(3))(2) (1), trans-Mo(2)(DAniF)(2)(O(2)CCH(3))(2) (2), trans-[Mo(2)(DAniF)(2)(O(2)CCH(3))(CH(3)CN(eq)())(2)]BF(4) (3), trans-[Mo(2)(DAniF)(2)(CH(3)CN(eq)())(4)](BF(4))(2) (4), and [Mo(2)(O(2)CH(3))(CH(3)CN(eq)())(6)(CH(3)CN(ax)())](BF(4))(3) (5), where eq and ax designate equatorial and axial ligands, respectively. A comparison with some previously synthesized complexes is given along with a discussion of the overall reactivity of all compounds.  相似文献   

9.
The use of polysaccharides as building blocks in the development of nano-sized drug delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, low toxicity and low cost. In addition, the variety of physicochemical properties and the ease of chemical modifications enable the preparation of a wide array of nanoparticles. This tutorial review describes the properties of common polysaccharides, the main mechanisms for polysaccharide based-nanoparticles preparation, and provides examples from the conceptual design towards pre-clinical and clinical applications.  相似文献   

10.
Polypyridyl complexes of Ru(II) and Ir(III) incorporating a boronic acid substituent undergo cross-coupling with bromo-substituted complexes, and a sequential coupling-bromination-coupling strategy permits the controlled synthesis of a luminescent Y-shaped heterometallic assembly, in which efficient energy transfer to the terminus occurs.  相似文献   

11.
Complexation of the highly branched, pentadecadentate chelating ligand cis,cis-1,3,5-cyclohexanetriamine-N,N,N',N',N",N"-hexaacetic acid (H(6)L) with iron(III) and sodium cations in the presence of carbonate anions leads to the formation of an [Fe6L2] cluster comprising an [Fe6] cage linked by 12 exo-coordinated sodium cations to form an extended 3D array.  相似文献   

12.
It is shown that many monodispersed colloid particles, precipitated in homogeneous solutions, are formed by aggregation of nanosize subunits. A model is described that specifies conditions which may yield such spherical particles of narrow size distribution by interactions of precursor singlets. A good agreement was achieved for size selection of gold and cadmium sulfide dispersions. It is illustrated that particles of other shapes may also formed by the aggregation mechanism, and the challenges facing attempts to quantify such processes are pointed out. Finally, examples are given of consequences caused by particles being composed of nanosubunits. The text was submitted by the author in English.  相似文献   

13.
From the viewpoint of a materials scientist, viruses can be regarded as organic nanoparticles. They are composed of a small number of different (bio)polymers: proteins and nucleic acids. Many viruses are enveloped in a lipid membrane and all viruses do not have a metabolism of their own, but rather use the metabolic machinery of a living cell for their replication. Their surface carries specific tools designed to cross the barriers of their host cells. The size and shape of viruses, and the number and nature of the functional groups on their surface, is precisely defined. As such, viruses are commonly used in materials science as scaffolds for covalently linked surface modifications. A particular quality of viruses is that they can be tailored by directed evolution by taking advantage of their inbuilt colocalization of geno- and phenotypes. The powerful techniques developed by life sciences are becoming the basis of engineering approaches towards nanomaterials, opening a wide range of applications far beyond biology and medicine.  相似文献   

14.
[STRUCTURE: SEE TEXT] Acyclic receptors containing neutral hydrogen bonding sites, such as amino-pyridine groups and a crown unit, perform effective recognition of neutral sugar molecules through multiple interactions. Receptor 1 has been shown to be a particularly effective and highly selective receptor for beta-glucopyranoside.  相似文献   

15.
16.
Supramolecular nanowires are specifically self-assembled from adenosine 5'-triphosphate (ATP) and dichloro-substituted thiacarbocyanine dyes. Spectral blue-shift and induced circular dichroism with exciton coupling are observed upon mixing the dye and ATP molecules in water. These observations indicate the formation of chiral 1/ATP supramolecular assemblies with excitation energy delocalized in the parallel-oriented (H-aggregated) chromophores. Interestingly, formation of H-aggregates is facilitated most in the presence of ATP and not by other nucleotides (ADP or AMP). In electron microscopy, aqueous 1/ATP mixture gives developed nanowires with a minimum width of ca. 10 nm and lengths of several micrometers. The ATP-directed nanowires exhibit reversible thermal self-assembly accompanied by supramolecular thermochromism. This is the first example of ATP-based supramolecular nanoassemblies, and the use of small biomolecules as building blocks for functional supermolecules provides a new perspective in the design of bio-nanomaterials.  相似文献   

17.
Two new cyclodextrin-based ligands with dual exo/endo binding domains were synthesised in high yields by reacting dimesylated or tetramesylated α-CD derivatives with sodium sulfide in either dimethylsulfoxyde or acetone/18-crown-6. The capping of adjacent glucose units was shown to be strongly favoured in both cases. Depending on the nature of the metal precursor being used, one of the synthesised thiacavitands forms either rigid nanotubular dimers or chelate complexes having receptor properties upon metal complexation.  相似文献   

18.
It is reported that S-glycosyl O-methyl phenylcarbamothioates (SNea carbamothioates) have a fully orthogonal character in comparison to S-benzoxazolyl (SBox) glycosides. This complete orthogonality was revealed by performing competitive glycosylation experiments in the presence of various promoters. The results obtained indicate that SNea carbamothioates have a very similar reactivity profile to that of glycosyl thiocyanates, yet are significantly more stable and tolerate selected protecting group manipulations. These features make the SNea carbamothioates new promising building blocks for further utilization in oligosaccharide synthesis.  相似文献   

19.
Polyanionic species have been obtained in high yield by a new route in the ring-opening reaction of cyclic oxonium [3,3'-Co(8-C4H8O2-1,2-C2B9H10)(1',2'-C2B9H11)] (2) by using carboxylic acids, Grignard reagents, and thiocarboranes as nucleophiles. The crystal structures of Na3(H2O)(C2H5OH)[1',3',5'-{3,3'-Co(8-O(CH2CH2O)2-1,2-C2B9H10)(1',2'-C2B9H11)}3-C6H3] and Na(H2O)[3,3'-Co(8-O(CH2CH2O)2C(O)CH3-1,2-C2B9H10)(1',2'-C2B9H11)] show that the chain contributes three or two oxygen atoms for coordination to Na(+), and interestingly, the [3,3'-Co(1,2-C2B9H11)2](-) moiety provides extra B-H coordination sites. These B-H...Na interactions in the solid state have also been confirmed by dynamic NMR studies in solution. These new polyanionic compounds that contain multiple carborane or metallacarborane clusters at their periphery may prove useful as new classes of boron neutron capture therapy compounds with enhanced water solubility and as a core to make a new class of dendrimers.  相似文献   

20.
Thiophene branched structures have been proposed as candidates for photon harvesting and electron-hole transporting materials in novel organic light emitting diodes and solar energy conversion devices. To understand the photoinduced processes in a novel thiophene dendrimer system, the excited state dynamics and nonlinear optical properties of 3D oligothiophene dendrimers have been investigated. The key point of this contribution is that we have found that with these thiophene dendrimer systems, the excitation is delocalized over a large number of thiophene units in the dendrimer and there is an ultrafast energy transfer (200-300 fs) to the longest branch of dendrimer, which can be utilized for future optical devices. In terms of nonlinear optics, it was found that a super-linear increase of two-photon absorption cross-section is observed with an increase in thiophene dendrimer generation that can be explained by the increased excitation delocalization. Generation dependent torsional energy redistribution has also been observed, which planarizes the final emissive state on a picosecond time scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号