首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogenated nanocrystalline diamond films with controlled electrical conductivity are grown in electrical arc plasma in CH4/H2/Ar/N2 gas mixtures and characterized by scanning electron microscopy and spectroscopic measurements. Their electrochemical properties are studied by electrochemical impedance spectroscopy. Transfer coefficients of reactions in the [Fe(CN)6]3−/4− redox system are determined. The electrochemical behavior of the material is controlled by its nitrogenation (3–20% N2 in the reaction gas mixture). The nitrogenated nanocrystalline diamond has higher differential capacitance in indifferent electrolyte (1 M KCl) solution than not nitrogenated one; the nitrogenation also increases the reversibility of reactions in the [Fe(CN)6]3−/4− redox system. By and large, with nitrogenation of diamond, its electrochemical behavior changes from the one characteristic of a “poor conductor” to that characteristic of metallike conductor. In this respect the nanocrystalline diamond electrodes grown in the electrical arc plasma are similar to those grown in microwave plasma.  相似文献   

2.
The semiconductor properties of nitrogenated nanocrystalline diamond electrodes and their corrosion transformations caused by electrochemical experiment in indifferent electrolyte (1 M K2SO4) were studied by the electrochemical impedance spectroscopy method. It was shown that after electrochemical measurements a narrow diamond peak at 1335.7 cm?1 appears in the Raman spectrum; formerly the peak was hidden at a background of the intense signal inherent to graphite-like carbon. It was suggested that the corrosion damage caused by the exposure to electrochemical experiment resulted in a decrease of relative amount of nondiamond (graphite-like) carbon in the subsurface layer in the nanocrystalline diamond. By using Mott-Schottky plots, the nanocrystalline diamond was shown having n-type conductance. Within the bounds of the “effective medium” approach, the nanocrystalline diamond’s flat-band potential in aqueous solution and the noncompensated donor apparent concentration were estimated.  相似文献   

3.
The new boron-doped nanocrystalline diamond microelectrode arrays (BNCD-MEAs) with 16 channels were designed to detect biological signals from some activated cancer cells. Upon recordings of the released H2O2 from cancer cells stimulated by ascorbic acid (AA), it can readily detect the reactive oxygen species (ROS) released from target cells, which will be helpful for the cancer cell recognition and also beneficial for further studying the cause of relevant disease.  相似文献   

4.
In the title compound, [Cd(C8H4O4)(C10H8N2O2)(H2O)]n, (I), each CdII atom is seven‐coordinated in a distorted monocapped trigonal prismatic coordination geometry, surrounded by four carboxylate O atoms from two different benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, two O atoms from two distinct 4,4′‐bipyridine N,N′‐dioxide (bpdo) ligands and one water O atom. The CdII atom and the water O atom are on a twofold rotation axis. The bpdo and 1,4‐bdc ligands are on centers of inversion. Each crystallographically unique CdII center is bridged by the 1,4‐bdc dianions and bpdo ligands to give a three‐dimensional diamond framework containing large adamantanoid cages. Three identical such nets are interlocked with each other, thus directly leading to the formation of a threefold interpenetrated three‐dimensional diamond architecture. To the best of our knowledge, (I) is the first example of a threefold interpenetrating diamond net based on both bpdo and carboxylate ligands. There are strong linear O—H...O hydrogen bonds between the water molecules and carboxylate O atoms within different diamond nets. Each diamond net is hydrogen bonded to its two neighbors through these hydrogen bonds, which further consolidates the threefold interpenetrating diamond framework.  相似文献   

5.
Thick film of nanocrystalline Co0.8Ni0.2Fe2O4 was obtained by sol–gel citrate method for gas sensing application. The synthesized powder was characterized by X-ray diffraction (XRD) and transmission electron microscopy. The XRD pattern shows spinel type structure of Co0.8Ni0.2Fe2O4. XRD of Co0.8Ni0.2Fe2O4 revels formation of solid solution with average grain size of about 30 nm. From gas sensing properties it observed that nickel doping improves the sensor response and selectivity towards ammonia gas and very low response to LPG, CO, and H2S at 280 °C. Furthermore, incorporation of Pd improves the sensor response and stability of ammonia gas and reduced the operating temperature upto 210 °C. The sensor is a promising candidate for practical detector of ammonia.  相似文献   

6.
To elucidate the effects of NO2 and H2O molecules on the surface conductivity of hydrogenated diamond film, models of various adsorbates containing different molecular ratio of NO2 and H2O on hydrogenated diamond (100) surfaces were constructed. The adsorption energies, equilibrium geometries of adsorbates, density of states, and atomic Mulliken populations were studied by using first‐principles method. The results showed that H2O molecule in the adsorbate could weaken the interactions between the adsorbates and hydrogenated diamond surface significantly. Compared with H2O molecule, NO2 molecule relaxes more dramatically when adsorbed on hydrogenated diamond surface. In addition, density of states for C(100):H–2NO2, C(100):H–NO2, and C(100):H–NO2 + H2O systems are very similar to each other, which indicates an obvious peak at valence band maximum level for all the three samples. It can be attributed to mainly single occupied molecule orbital of NO2 molecule and slightly C–H bond of C(100):H substrate. When the adsorbates contain one NO2 and two H2O molecules, the peak shifts slightly into valence band, but its intensity increases significantly. All the samples exhibit p‐type surface conductivity when adsorbed with pure NO2 molecules, and the surface conductivity remains as H2O molecules added into the NO2 adsorbate layer. However, for oxygenated diamond surface, very week interactions generate between diamond surface and various adsorbates. All the oxygenated diamond (100) surfaces with various adsorbates containing different NO2 and H2O molecules on it exhibit an insulating property.  相似文献   

7.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

8.
The precursor of nanocrystalline BiFeO3 was obtained by solid-state reaction at low heat using Bi(NO3)3·5H2O, FeSO4·7H2O, and Na2CO3·10H2O as raw materials. The nanocrystalline BiFeO3 was obtained by calcining the precursor. The precursor and its calcined products were characterized by differential scanning calorimetry (DSC), Fourier transform-infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The data showed that highly crystallization BiFeO3 with rhombohedral structure (space group R3c (161)) was obtained when the precursor was calcined at 873 K for 2 h. The thermal process of the precursor experienced three steps, which involve the dehydration of adsorption water, hydroxide, and decomposition of carbonates at first, and then crystallization of BiFeO3, and at last decomposition of BiFeO3 and formation of orthorhombic Bi2Fe4O9. The mechanism and kinetics of the crystallization process of BiFeO3 were studied using DSC and XRD techniques, the results show that activation energy of the crystallization process of BiFeO3 is 126.49 kJ mol−1, and the mechanism of crystallization process of BiFeO3 is the random nucleation and growth of nuclei reaction.  相似文献   

9.
Excess molar volumes VmE for binary liquid mixtures of n-alkoxyethanols or polyethers + 2-pyrrolidinone or N-methyl-2-pyrrolidinone have been measured with a continuous dilution dilatometer at 298.15 K and atmospheric pressure as a function of composition. The alkoxyethanols are diethylene glycol monomethylether, 2-(2-methoxyethoxy) ethanol, CH3(OC2H4)2OH; diethylene glycol monoethylether, 2-(2-ethoxyethoxy) ethanol, C2H5(OC2H4)2OH; and diethylene glycol monobutylether, 2-(2-butoxyethoxy) ethanol, C4H9(OC2H4)2OH; whereas the polyethers are diethylene glycol dimethylether, bis(2-methoxyethyl)ether, CH3(OC2H4)2OCH3; diethylene glycol diethylether, bis(2-ethoxyethyl)ether, C2H5(OC2H4)2OC2H5; and diethylene glycol dibutylether, bis(2-butoxyethyl)ether, C4H9(OC2H4)2OC4H9. In all mixtures the excess molar volumes are negative and symmetric across the entire composition range. The excess volumes are fitted to the Redlich–Kister polynomial equation to obtain the binary coefficients and the standard errors. The experimental results have also been discussed on the basis of IR measurements.  相似文献   

10.
Electrochemical behavior of nanocrystalline diamond films grown in microwave plasma initiated in Ar-CH4-H2-N2 mixtures containing 30 to 90 vol % N2 is studied. Thin-film nanocrystalline-diamond electrodes grown at this high (30 to 90 vol %) N2 content in reactor behave as nearly metal-like: reaction in the [Fe(CN)6]3−/4− redox couple proceeds in a reversible manner. Generally, with the increasing of the N2 content in the reactor the electrochemical behavior of a “poor conductor” gives place to the metal-like one; in a sense, the material’s electrochemical activity saturates and does not change beyond some critical value of the N2 content (∼30 vol %). This conclusion is substantiated by the study of Raman spectra of the nanocrystalline diamond films: at this N2 content the diamond-graphite structure of the material is stabilized.  相似文献   

11.
The title compound, [Ni(C6H4NO2)2], crystallized in a three‐dimensional framework consisting of three interpenetrating diamond‐like nets. The Ni atom is on a twofold axis, the coordination is `(O2)2N2' in a cis arrangement and the ligands are bridging.  相似文献   

12.
A pretreatment-transient reaction product analysis method was applied to study the reactions and average composition of the possible surface intermediate species in selective catalytic reduction with ethylene of NO x over Co-ZSM-5. The reactions of the surface species, formed by the pretreatment of Co-ZSM-5 in a NO/C2H4/O2 mixture at 275°C, with the NO/O2 flow produced much more N2 than that with the individual NO or O2 flow. The similarity of N2/CO x /H2O product distribution generated from the above surface species-NO/O2 reactions and that from the normal NO/C2H4/O2 flow reactions implies that the surface species NC a O b H c formed in the three-component pretreatment process is very likely the primary intermediate surface species generated during the real flow reactions. The in situ FT-IR (DRIFT) spectroscopy measurements of the surface species support the above conclusion.  相似文献   

13.
Oxalato‐ and Squarato‐Bridged Threedimensional Networks: The Crystal Structures of La2(C2O4)(C4O4)2(H2O)8 · 2.5 H2O and K[Bi(C2O4)2] · 5 H2O The title compounds have been formed by hydrolysis of amino‐ and thioderivatives of squaric acid in the presence of LaIII and BiIII ions. Both compounds are threedimensional coordination polymers in the solid state, as shown by single crystal X‐ray crystallography. In La2(C2O4)(C4O4)2(H2O)8 · 2.5 H2O oxalato‐bridged pairs of LaO9 polyhedra are connected with identical neighbouring polyhedra by squarate ions. In K[Bi(C2O4)2] · 5 H2O each Bi atom is fourfold linked to other Bi atoms by the oxalate ions. The resulting 3D network shows a diamond‐like topology with square‐shaped channels. In both structures the channels are partially filled by water molecules.  相似文献   

14.
BaTi4O9 nanocrystalline powder was prepared by sol-gel method using Ti(OC4H9)4 and Ba(CH3COO)2 as raw materials. The optimum process was obtained by analyzing the synthesis condition of the single-phase BaTi4O9 nanocrystalline powder as follows: the content of acetyl-Titanium = 1 mol/L. pH = 4.2, molar ratio of water/alkoxide = 15, and the powder is kept at 1200°C for 2 h. The XRD and TEM analysis showed that the single-phase BaTi4O9 nanocrystalline powder of 30 nm in size was well prepared.  相似文献   

15.
Lithium alanate (LiAlH4) is of particular interest as one of the most promising candidates for solid‐state hydrogen storage. Unfortunately, high dehydrogenation temperatures and relatively slow kinetics limit its practical applications. Herein, 3D flower‐like nanocrystalline Ni/C, composed of highly dispersed Ni nanoparticles and interlaced carbon flakes, was synthesized in situ. The as‐synthesized nanocrystalline Ni/C significantly decreased the dehydrogenation temperature and dramatically improved the dehydrogenation kinetics of LiAlH4. It was found that the LiAlH4 sample with 10 wt % Ni/C (LiAlH4‐10 wt %Ni/C) began hydrogen desorption at approximately 48 °C, which is very close to ambient temperature. Approximately 6.3 wt % H2 was released from LiAlH4‐10 wt %Ni/C within 60 min at 140 °C, whereas pristine LiAlH4 only released 0.52 wt % H2 under identical conditions. More importantly, the dehydrogenated products can partially rehydrogenate at 300 °C under 4 MPa H2. The synergetic effect of the flower‐like carbon substrate and Ni active species contributes to the significantly reduced dehydrogenation temperatures and improved kinetics.  相似文献   

16.
By using cyclohexane‐1,2‐diamine (chxn), Ni(ClO4)2 ? 6H2O and Na3[Mo(CN)8] ? 4H2O, a 3D diamond‐like polymer {[NiII(chxn)2]2[MoIV(CN)8] ? 8H2O}n ( 1 ) was synthesised, whereas the reaction of chxn and Cu(ClO4)2 ? 6H2O with Na3[MV(CN)8] ? 4H2O (M=Mo, W) afforded two isomorphous graphite‐like complexes {[CuII(chxn)2]3[MoV(CN)8]2 ? 2H2O}n ( 2 ) and {[CuII(chxn)2]3[WV(CN)8]2 ? 2H2O}n ( 3 ). When the same synthetic procedure was employed, but replacing Na3[Mo(CN)8] ? 4H2O by (Bu3NH)3[Mo(CN)8] ? 4H2O (Bu3N=tributylamine), {[CuII(chxn)2MoIV(CN)8][CuII(chxn)2] ? 2H2O}n ( 4 ) was obtained. Single‐crystal X‐ray diffraction analyses showed that the framework of 4 is similar to 2 and 3 , except that a discrete [Cu(chxn)2]2+ moiety in 4 possesses large channels of parallel adjacent layers. The experimental results showed that in this system, the diamond‐ or graphite‐like framework was strongly influenced by the inducement of metal ions. The magnetic properties illustrate that the diamagnetic [MoIV(CN)8] bridges mediate very weak antiferromagnetic coupling between the NiII ions in 1 , but lead to the paramagnetic behaviour in 4 because [MoIV(CN)8] weakly coordinates to the CuII ions. The magnetic investigations of 2 and 3 indicate the presence of ferromagnetic coupling between the CuII and WV/MoV ions, and the more diffuse 5d orbitals lead to a stronger magnetic coupling interaction between the WV and CuII ions than between the MoV and CuII ions.  相似文献   

17.
A simple and concise method catalyzed by nanocrystalline ZnZr4(PO4)6 ceramics has been reported for the synthesis of a series of trans-2-benzoyl-3-(aryl)-2H-furo[3,2-c]chromen-4(3H)-ones using a multicomponent reaction of 2,4′-dibromoacetophenone, benzaldehydes and 4-hydroxycoumarin under microwave irradiation. This method provides several advantages including easy workup, excellent yields, short reaction times, using of microwave as clean method, recoverability of the catalyst and little catalyst loading.  相似文献   

18.
Two novel coordination polymers based on mixed ligands, [Zn(dpb)(bdc)(H2O)]n ( 1 ) and [Cd(dpb)(bbdc)(H2O)(DMF)]n ( 2 ) [dpb = 1, 4‐bis(pyridin‐3‐ylmethoxy)benzene, H2bdc = 1, 4‐benzenedicarboxylate, H2bbdc = 4, 4′‐dibenzenedicarboxylate], were synthesized under hydrothermal conditions. Compound 1 forms meso‐helical chain and shows three fold interpenetrating architecture with 4‐connected net {6 6} diamond topology. Compound 2 is a left‐ and right‐handed helical layer, which are interacted by π–π stacking interactions to construct a 3D framework. The luminescent properties of the compounds are discussed.  相似文献   

19.
In the mixed‐ligand metal–organic title polymeric compound, [Zn(C10H8O4)(C10H16N6)]n or [Zn(PBEA)(BTH)]n [H2PBEA is benzene‐1,4‐diacetic acid and BTH is 1,6‐bis(1,2,4‐triazol‐1‐yl)hexane], the asymmetric unit contains a ZnII atom, one half of a BTH ligand and one half of a doubly deprotonated H2PBEA ligand. Each ZnII centre lies on a crystallographic twofold rotation axis and is four‐coordinated by two O atoms from two distinct PBEA2− ligands and two N atoms from two different BTH ligands in a {ZnO2N2} coordination environment. The three‐dimensional topology of the title compound corresponds to that of a fivefold interpenetrating diamond‐like metal–organic framework.  相似文献   

20.
In the title polymeric compound, [Cu(C9H6O4)(C3H4N2)2]n, the copper(II) cation occupies an N2O3 coordination sphere defined by two 1H‐imidazole (imid) ligands in trans positions and three carboxylate O atoms from three different 2‐(carboxylatomethyl)benzoate (hpt2−) dianions. The geometry is that of a square pyramid with one of the O atoms at the apex, bridging neighbouring metal centres into an [–ON2CuO2CuN2O–] dinuclear unit. These units are in turn connected by hpt anions into a reticular mesh topologically characterized by two types of loops, viz. a four‐membered Cu2O2 diamond motif and a 32‐membered Cu4O8C20 ring. The imid groups do not take part in the formation of the two‐dimensional structure, but take part in the N—H...O interactions. These arise only within individual planes, interplanar interactions being only of the van der Waals type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号