首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Photolysis of [Ir(η2-coe)H2(TpMe2)] ( 1 ; TpMe2=hydrotris(3,5-dimethylpyrazolyl)borato, coe=(Z)-cyclooctene) in CH3OH gives a mixture of [IrH4(TpMe2)] ( 4 ) and [Ir(CO)H2(TpMe2)] ( 5 ) in a ca. 1 : 1 ratio. Mass-spectral analysis of the distillate of the reaction mixture at the end of the photolysis shows the presence of coe. When pure CD3OD is used as solvent, the deuteride complexes [IrD4(TpMe2)] ((D4)- 4 ) and [Ir(CO)D2(TpMe2)] ((D2)- 5 ) are obtained. Also the photolysis of [Ir(η4-cod)(TpMe2)] ( 3 ) (cod=cycloocta-1,5-diene) gives 4 and 5 . A key feature of this photoreaction is the intramolecular dehydrogenation of cod with formation of cycloocta-1,3,5-triene, detected by mass spectroscopy at the end of the photolysis. Labeling experiments using CD3OD show that the hydrides in 4 originate from MeOH. When 13CH3OH is used as solvent, [Ir(13CO)H2(TpMe2)] is formed demonstrating that CH3OH is the source of the CO ligand. The observation that the photolysis of both 1 and 3 give the same product mixture is attributed to the formation of a common intermediate, i.e., the coordinatively unsaturated 16e species {IrH2(TpMe2)}.  相似文献   

2.
An unusually negative oxidation potential is found for the tyrosine residue in the center of fungal galactose oxidase. The complex [Cu(TpCum,Me){O(MeS)C6H4}] (see picture on the right; TpCum,Me=hydrotris(pyrazolyl)borate) offers insight into the mode of (cysteinyl-tyrosine) coordination to the copper center, and the reason for the low oxidation potential.  相似文献   

3.
A new family of 14‐electron, four‐coordinate iron(II) complexes of the general formula [TptBu,MeFeX] (TptBu,Me is the sterically hindered hydrotris(3‐tert‐butyl‐5‐methyl‐pyrazolyl) borate ligand and X=Cl ( 1 ), Br, I) were synthesized by salt metathesis of FeX2 with TptBu,MeK. The related fluoride complex was prepared by reaction of 1 with AgBF4. Chloride 1 proved to be a good precursor for ligand substitution reactions, generating a series of four‐coordinate iron(II) complexes with carbon, oxygen, and sulphur ligands. All of these complexes were fully characterized by conventional spectroscopic methods and most were characterized by single‐crystal X‐ray crystallographic analysis. Magnetic measurements for all complexes agreed with a high‐spin (d6, S=2) electronic configuration. The halide series enabled the estimation of the covalent radius of iron in these complexes as 1.24 Å.  相似文献   

4.
《Polyhedron》2001,20(15-16):1891-1896
The tris(mercaptophenylimidazolyl)borate iron and cobalt complexes [TmPh]2M (M=Fe, Co) have been synthesized by reaction of [TmPh]Tl with MI2. Structural characterization by X-ray diffraction demonstrates that the potentially tridentate [TmPh] ligand binds through only two sulfur donors in these ‘sandwich’ complexes and that the ‘tetrahedral’ metal centers supplement the bonding by interactions with the two B–H groups. Comparison of the structures of [TmPh]2M (M=Fe, Co) with the related tris(pyrazolyl)borate [TpPh]2M counterparts indicates that the tris(mercaptoimidazolyl) ligand favors lower primary coordination numbers in divalent metal complexes. The trivalent complexes, {[TpPh]2Fe}[ClO4] and {[pzBmMe]2Co}I, however, exhibit octahedral coordination, with the ligands binding using their full complement of donor atoms.  相似文献   

5.
The reactivity of a series of iridium? pyridylidene complexes with the formula [TpMe2Ir(C6H5)2(C(CH)3C(R)N H] ( 1 a – 1 c ) towards a variety of substrates, from small molecules, such as H2, O2, carbon oxides, and formaldehyde, to alkenes and alkynes, is described. Most of the observed reactivity is best explained by invoking 16 e? unsaturated [TpMe2Ir(phenyl)(pyridyl)] intermediates, which behave as internal frustrated Lewis pairs (FLPs). H2 is heterolytically split to give hydride? pyridylidene complexes, whilst CO, CO2, and H2C?O provide carbonyl, carbonate, and alkoxide species, respectively. Ethylene and propene form five‐membered metallacycles with an IrCH2CH(R)N (R=H, Me) motif, whereas, in contrast, acetylene affords four‐membered iridacycles with the IrC(?CH2)N moiety. C6H5(C?O)H and C6H5C?CH react with formation of Ir? C6H5 and Ir? C?CPh bonds and the concomitant elimination of a molecule of pyridine and benzene, respectively. Finally the reactivity of compounds 1 a – 1 c against O2 is described. Density functional theory calculations that provide theoretical support for these experimental observations are also reported.  相似文献   

6.
A series of solvent-free heteroleptic terminal rare-earth-metal alkyl complexes stabilized by a superbulky tris(pyrazolyl)borato ligand with the general formula [TptBu,MeLnMeR] have been synthesized and fully characterized. Treatment of the heterobimetallic mixed methyl/tetramethylaluminate compounds [TptBu,MeLnMe(AlMe4)] (Ln=Y, Lu) with two equivalents of the mild halogenido transfer reagents SiMe3X (X=Cl, I) gave [TptBu,MeLnX2] in high yields. The addition of only one equivalent of SiMe3Cl to [TptBu,MeLuMe(AlMe4)] selectively afforded the desired mixed methyl/chloride complex [TptBu,MeLuMeCl]. Further reactivity studies of [TptBu,MeLuMeCl] with LiR or KR (R=CH2Ph, CH2SiMe3) through salt metathesis led to the monomeric mixed-alkyl derivatives [TptBu,MeLuMe(CH2SiMe3)] and [TptBu,MeLuMe(CH2Ph)], respectively, in good yields. The SiMe4 elimination protocols were also applicable when using SiMe3X featuring more weakly coordinating moieties (here X=OTf, NTf2). X-ray structure analyses of this diverse set of new [TptBu,MeLnMeR/X] compounds were performed to reveal any electronic and steric effects of the varying monoanionic ligands R and X, including exact cone-angle calculations of the tridentate tris(pyrazolyl)borato ligand. Deeper insights into the reactivity of these potential precursors for terminal alkylidene rare-earth-metal complexes were gained through NMR spectroscopic studies.  相似文献   

7.
Seeking to enrich the yet less explored field of scorpionate complexes bearing antioxidant properties, we, here, report on the synthesis, characterization and assessment of the antioxidant activity of new complexes derived from three scorpionate ligands. The interaction between the scorpionate ligands thallium(I) hydrotris(5-methyl-indazolyl)borate (TlTp4Bo,5Me), thallium(I) hydrotris(4,5-dihydro-2H-benzo[g]indazolyl)borate (TlTpa) and potassium hydrotris(3-tert-butyl- pyrazolyl)borate (KTptBu), and metal(II) chlorides, in dichloromethane at room temperature, produced a new family of complexes having the stoichiometric formula [M(Tp4Bo,5Me)2] (M = Cu, 1; Zn, 4; Cd, 7), [M(Tpa)2] (M = Cu, 2; Zn, 5; Cd, 8), [Cu(HpztBu)3Cl2] (3), [Zn(TptBu)Cl] (6) and [Cd(BptBu)(HpztBu)Cl] (9). The obtained metal complexes were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and elemental analysis, highlighting the total and partial hydrolysis of the scorpionate ligand TptBu during the synthesis of the Cu(II) complex 3 and the Cd(II) complex 9, respectively. An assessment of the antioxidant activity of the obtained metal complexes was performed through both enzymatic and non-enzymatic assays against 1,1-diphenyl-2-picryl- hydrazyl (DPPH·), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl (HO·), nitric oxide (NO·), superoxide (O2) and peroxide (OOH·) radicals. In particular, the complex [Cu(Tpa)2]⋅0.5H2O (2) exhibited significant antioxidant activity, as good and specific activity against superoxide (O2−·), (IC50 values equal to 5.6 ± 0.2 μM) and might be identified as auspicious SOD-mimics (SOD = superoxide dismutase).  相似文献   

8.
《Polyhedron》1999,18(8-9):1107-1113
Structural characterization of [S(CH2CH2pzMe2)2]ZnCl2 by X-ray diffraction demonstrates that the potentially tridentate [NNS] donor ligand S(CH2CH2pzMe2)2 does not coordinate via sulfur, but only binds through the pyrazolyl groups. Furthermore, the ligand does not chelate, but preferentially bridges two zinc centers, thereby resulting in a polymeric, helical, structure. In contrast to the zinc system, the thioether functionality does bind to cadmium in related derivatives, [S(CH2CH2pzMe2)2]CdI2 and [S(CH2CH2pzMe2)2]Cd(NO3)2.  相似文献   

9.
The reaction of monomeric [(TptBu,Me)LuMe2] (TptBu,Me=tris(3‐Me‐5‐tBu‐pyrazolyl)borate) with primary aliphatic amines H2NR (R=tBu, Ad=adamantyl) led to lutetium methyl primary amide complexes [(TptBu,Me)LuMe(NHR)], the solid‐state structures of which were determined by XRD analyses. The mixed methyl/tetramethylaluminate compounds [(TptBu,Me)LnMe({μ2‐Me}AlMe3)] (Ln=Y, Ho) reacted selectively and in high yield with H2NR, according to methane elimination, to afford heterobimetallic complexes: [(TptBu,Me)Ln({μ2‐Me}AlMe2)(μ2‐NR)] (Ln=Y, Ho). X‐ray structure analyses revealed that the monomeric alkylaluminum‐supported imide complexes were isostructural, featuring bridging methyl and imido ligands. Deeper insight into the fluxional behavior in solution was gained by 1H and 13C NMR spectroscopic studies at variable temperatures and 1H–89Y HSQC NMR spectroscopy. Treatment of [(TptBu,Me)LnMe(AlMe4)] with H2NtBu gave dimethyl compounds [(TptBu,Me)LnMe2] as minor side products for the mid‐sized metals yttrium and holmium and in high yield for the smaller lutetium. Preparative‐scale amounts of complexes [(TptBu,Me)LnMe2] (Ln=Y, Ho, Lu) were made accessible through aluminate cleavage of [(TptBu,Me)LnMe(AlMe4)] with N,N,N′,N′‐tetramethylethylenediamine (tmeda). The solid‐state structures of [(TptBu,Me)HoMe(AlMe4)] and [(TptBu,Me)HoMe2] were analyzed by XRD.  相似文献   

10.
Reaction of FeCl3 with one equivalent of acac (acac = pentane-2,4-dionate) and KTpMe2 (TpMe2 = hydrotris(3,5-dimethyl-pyrazol-1-yl)borate) yielded TpMe2Fe(acac)Cl (3), which upon reaction with methanolic solution of sodium azide resulted in the formation of a six coordinate compound TpMe2Fe(acac)N3 (4) with a single azide. When the reaction of FeCl3 and KTpMe2 was performed with two equivalents of sodium azide and one equivalent of 3,5-dimethylpyrazole (PzMe2H), a six coordinate cis azide compound [TpMe2Fe(PzMe2H)(N3)2] (5) was obtained. These compounds were characterized by spectroscopic methods and single crystal X-ray crystallography. Electrochemical studies of 5 show that it can be irreversibly reduced at relatively lower potential than 4. The photolysis of 5 was performed at 77 K at different wavelengths (480, 419, and 330 nm) showing that 5 was photoreduced to a high-spin Fe(II) species instead of photooxidized to Fe(V).  相似文献   

11.
The title complex, [Zn(C15H22BN6)(C2H3O2)] or (TpMe,Me)Zn(OAc), contains a tripodal tris(pyrazolyl)hydroborate ligand, a monodentate acetate ligand and a ZnII centre in a distorted tetrahedral coordination environment capped on one triangular face by a secondary Zn...O interaction with the second O atom of the acetate ligand. The four‐coordination of ZnII and the essentially monodentate character of the acetate ligand are due to the high steric demands of the ligand set, which prevent chelate formation and five‐coordination and lead to relatively long Zn—O and Zn—N bonds compared with related complexes of ZnII and other metals.  相似文献   

12.
The gas‐phase dehydration–rearrangement (DR) reactions of protonated alcohols [Me2(R)CCH(OH2)Me]+ [R=Me ( ME ), Et ( ET ), and iPr ( I‐PR )] were studied by using static approaches (intrinsic reaction coordinate (IRC), Rice–Ramsperger–Kassel–Marcus theory) and dynamics (quasiclassical trajectory) simulations at the B3LYP/6‐31G(d) level of theory. The concerted mechanism involves simultaneous water dissociation and alkyl migration, whereas in the stepwise reaction pathway the dehydration step leads to a secondary carbocation intermediate followed by alkyl migration. Internal rotation (IR) can change the relative position of the migrating alkyl group and the leaving group (water), so distinct products may be obtained: [Me(R)CCH(Me)Me ??? OH2]+ and [Me(Me)CCH(R)Me ??? OH2]+. The static approach predicts that these reactions are concerted, with the selectivity towards these different products determined by the proportion of the conformers of the initial protonated alcohols. These selectivities are explained by the DR processes being much faster than IR. These results are in direct contradiction with the dynamics simulations, which indicate a predominantly stepwise mechanism and selectivities that depend on the alkyl groups and dynamics effects. Indeed, despite the lifetimes of the secondary carbocations being short (<0.5 ps), IR can take place and thus provide a rich selectivity. These different selectivities, particularly for ET and I‐PR , are amenable to experimental observation and provide evidence for the minor role played by potential‐energy surface and the relevance of the dynamics effects (non‐IRC pathways, IR) in determining the reaction mechanisms and product distribution (selectivity).  相似文献   

13.
The photochemical rearrangement of [Rh(η4-1,5-cod)TpMe2](TpMe2=hydrotris(3,5-dimethylpyrazolyl)borato, 1,5-cod=cycloocta-1,5-diene) to the new compound [Rh(η4-1,3-cod)TpMe2] ( 2 ) is described. The characterization of 2 was carried out using 1H-, 13C-, and 103Rh-HMQC-NMR spectroscopy. Photolysis of 2 is a versatile entry point into the organometallic chemistry of the {RhTpMe2} fragment as it can be used to produce a) hydrido-carbonyl ([Rh(CO)H2TpMe2]), b) hydrido-phenyl-phosphite ([RhH(Ph)(P(OMe)3)TpMe2]), and c) ethoxide-hydrido-phosphite ([RhH(OEt)(P(OMe)3)TpMe2]) complexes.  相似文献   

14.
Novel Syntheses of Me2SbX (X = Cl, I) and Crystal Structures of Me2SbI and [(Me3Si)2CH]2SbCl The crystal structures of Me2SbI (Me = CH3) and [(Me3Si)2CH]2SbCl have been determined by X‐ray methods. Both molecules are pyramidal. The Me2SbI molecules are associated to chains through short intermolecular Sb…I distances (366,7(1) pm) with linear I–Sb…I units (171,87(4)°) and bent Sb–I…Sb bridges (116,83(3)°).  相似文献   

15.
Unusual chemical transformations such as three‐component combination and ring‐opening of N‐heterocycles or formation of a carbon–carbon double bond through multiple C–H activation were observed in the reactions of TpMe2‐supported yttrium alkyl complexes with aromatic N‐heterocycles. The scorpionate‐anchored yttrium dialkyl complex [TpMe2Y(CH2Ph)2(THF)] reacted with 1‐methylimidazole in 1:2 molar ratio to give a rare hexanuclear 24‐membered rare‐earth metallomacrocyclic compound [TpMe2Y(μN,C‐Im)(η2N,C‐Im)]6 ( 1 ; Im=1‐methylimidazolyl) through two kinds of C–H activations at the C2‐ and C5‐positions of the imidazole ring. However, [TpMe2Y(CH2Ph)2(THF)] reacted with two equivalents of 1‐methylbenzimidazole to afford a C–C coupling/ring‐opening/C–C coupling product [TpMe2Y{η3‐(N,N,N)‐N(CH3)C6H4NHCH?C(Ph)CN(CH3)C6H4NH}] ( 2 ). Further investigations indicated that [TpMe2Y(CH2Ph)2(THF)] reacted with benzothiazole in 1:1 or 1:2 molar ratio to produce a C–C coupling/ring‐opening product {(TpMe2)Y[μ‐η21‐SC6H4N(CH?CHPh)](THF)}2 ( 3 ). Moreover, the mixed TpMe2/Cp yttrium monoalkyl complex [(TpMe2)CpYCH2Ph(THF)] reacted with two equivalents of 1‐methylimidazole in THF at room temperature to afford a trinuclear yttrium complex [TpMe2CpY(μ‐N,C‐Im)]3 ( 5 ), whereas when the above reaction was carried out at 55 °C for two days, two structurally characterized metal complexes [TpMe2Y(Im‐TpMe2)] ( 7 ; Im‐TpMe2=1‐methyl‐imidazolyl‐TpMe2) and [Cp3Y(HIm)] ( 8 ; HIm=1‐methylimidazole) were obtained in 26 and 17 % isolated yields, respectively, accompanied by some unidentified materials. The formation of 7 reveals an uncommon example of construction of a C?C bond through multiple C–H activations.  相似文献   

16.
Tris(pyrazolyl)methanides, [C(3,5-R2pz)3]-, contain an unassociated tetrahedral carbanionic centre in the bridgehead position. In addition to nitrogen donor centres for transition metal coordination, an accessible reactive site for further manipulations is available in the backbone of the ligand. The coordination variability of the ambidental C-/N ligand [C(3,5-Me2pz)3]- was elucidated by investigating its coinage metal complexes. Two principle coordination modes were found for complexes of general formula [LMPR3] (with M = Cu(I), Ag(I), Au(I); L =[C(3,5-Me2pz)3]-; R = Ph, OMe). While for Cu(I) (2,3) and Ag(I) (4) complexes the anionic ligand acts as a face-capping, six electron N3-donor, gold(I) (5) is coordinated by the bridging carbanion yielding a two coordinate Au(I) complex comprising a covalent Au-C bond. The complexes featuring the kappa3-coordinated N3-donor ligand were investigated by 31P CP (MAS) NMR in the solid state.  相似文献   

17.
《Polyhedron》2001,20(15-16):2045-2053
Two new poly(pyrazolyl)borate ligands have been prepared: potassium tris[3-{(4-tbutyl)-pyrid-2-yl}-pyrazol-1-yl]hydroborate (KTpBuPy) which has three bidentate arms and is therefore hexadentate; and potassium bis[3-(2-pyridyl)-5-(methoxymethyl)pyrazol-1-yl]-dihydroborate (KBp(COC)Py) which has two bidentate arms and is therefore tetradentate. The crystal structures of their lanthanide complexes [La(TpBuPy)(NO3)2] and [La(Bp(COC)Py)2X] (X=nitrate or triflate) have been determined. In [La(TpBuPy)(NO3)2] the metal ion is ten-coordinate, from the hexadentate N-donor podand ligand and two bidentate nitrates. [La(Bp(COC)Py)2(NO3)] is also ten-coordinate, from two tetradentate ligands and a bidentate nitrate, but in [La(Bp(COC)Py)2(CF3SO3)] the metal ion is nine-coordinate because the triflate anion is monodentate. Two unexpected new complexes which arose from partial decomposition of the poly(pyrazolyl)borate ligands have also been characterised structurally. In [La(BuPypzH)3(O3SCF3)3] the metal ion is nine-coordinate from three bidentate pyrazolyl-pyridine arms (liberated by decomposition of KTpBuPy) and three triflate anions; there is extensive NH· · · O hydrogen-bonding between the pyrazolyl and triflate ligands. [Nd(TpPy)(BpPy)][Nd(PypzH)(NO3)4] was isolated from the reaction of hexadentate tris[3-(2-pyridyl)-pyrazol-1-yl]hydroborate (TpPy) with Nd(NO3)3. One of the TpPy ligands has lost one bidentate pyrazolyl-pyridine ‘arm’ (PypzH) to leave tetradentate tris[3-(2-pyridyl)-pyrazol-1-yl]dihydroborate (BpPy). In this structure, the cation [Nd(TpPy)(BpPy)]+ is ten-coordinate from inter-leaved hexadentate and tetradentate ligands, and the anion [Nd(PypzH)(NO3)4] is also ten-coordinate from the bidentate N-donor ligand PypzH and four bidentate nitrates.  相似文献   

18.
[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]M (M = K, Tl) reacts with “GaI” to give a series of compounds that feature Ga–Ga bonds, namely [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaI3, [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]GaGaI2GaI2( \textHpz\textMe2 {\text{Hpz}}^{{{\text{Me}}_{2} }} ) and [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga(GaI2)2Ga[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ], in addition to the cationic, mononuclear Ga(III) complex {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]2Ga}+. Likewise, [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]M (M = K, Tl) reacts with (HGaCl2) 2 and Ga[GaCl4] to give [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaCl3, {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]2Ga}[GaCl4], and {[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]GaGa[ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]}[GaCl4]2. The adduct [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→B(C6F5)3 may be obtained via treatment of [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]K with “GaI” followed by addition of B(C6F5)3. Comparison of the deviation from planarity of the GaY3 ligands in [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→GaY3 (Y = Cl, I) and [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga→GaY3, as evaluated by the sum of the Y–Ga–Y bond angles, Σ(Y–Ga–Y), indicates that the [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga moiety is a marginally better donor than [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga. In contrast, the displacement from planarity for the B(C6F5)3 ligand of [ \textTp\textMe2 {\text{Tp}}^{{{\text{Me}}_{2} }} ]Ga→B(C6F5)3 is greater than that of [ \textTm\textBu\textt {\text{Tm}}^{{{\text{Bu}}^{\text{t}} }} ]Ga→B(C6F5)3, an observation that is interpreted in terms of interligand steric interactions in the former complex compressing the C–B–C bond angles.  相似文献   

19.
Atrane-analogous Compounds. III. Atrane-analogous Compounds of the Type Me2DCH2CH2OSi(Me)(OCH2 CH2)2 D′Me (I) and Type Me2DCH2CH2OSi(Me) OCH2CH22D″Me2 (II) (Me?CH3; D, D′, D″?N, P, As) Atrane analogous compounds I and II (Abb. 1) have been prepared by condensation reactions of trifunctional silanes RSiX3 (X?Cl, OEt, NMe2) with N-methyldiethanolamine, ß-chloroethanol, ß-dimethylaminoethanol, and ß-dimethylarsanoethanol according to eqn. (1) to (3) and reaction schemes of Figs. 2 and 3, respectively. For compounds of type I weak N→Si adduct bonding is indicated for the MeN-donor of the eight-membered ring by significant shifts of the MeNCH2 and OCH2 proton n.m.r. signals. For compounds of type II there is no n.m.r. evidence for D→Si interactions. In spite of equal Lewis acidity of the Si atoms differences in adduct formation are observed for cage, ring, and acyclic podand systems, which can be explained mainly by entropy effects connected to the formation of five-membered rings.  相似文献   

20.
Reactivity of Tris(dialkylthiophosphinyl)phosphines – Crystal Structure of [Ag{O[P(S)Me2]2}2][AsF6] In contrast to tris(dialkylphosphoryl)phosphines the reaction of tris(dimethylthiophosphinyl)phosphine with transition metal hexafluoroarsenates of the type [M(SO2)m [AsF6]n (M = Ag, m = 0, n = 1; M = Fe, Cd, m = n = 2) forms no molecular 2 : 1-complexes but polymeric products. The silver polymer is transformed into [Ag{O[P(S)Me2]2}2][AsF6], which is also formed by the reaction of Ag[AsF6] with O[P(S)Me2]2. It crystallizes in the space group P1 with a = 862.5(2), b = 1 241.4(2), c = 1 254.0(3)pm, α = 80.34(1), β = 101.99(6), γ= 73.75(1)° (at 20°C) and Z = 2. The central silver atom is surrounded by four sulphur atoms in a slighly distorted tetrahedron. The average (Ag? S) and (P? S) bond lengthes are 259.4(2) pm and 194.9(2)pm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号