首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
We analyze both the spatial as well as the temporal coherence of an electron-hole condensate and the radiation emitted from it. These coherences evolve from being full for the low density Bose-Einstein condensate to a chaotic behavior for a high density Bardeen-Cooper-Schrieffer-like state. Time coherence is transferred, to the emitted radiation in the ultrafast regime, in a damped oscillatory way.  相似文献   

2.
The crossover between low and high density regimes of exciton-polariton condensates is examined using a BCS wave-function approach. Our approach is an extension of the BEC-BCS crossover theory for excitons, but includes a cavity photon field. The approach can describe both the low density limit, where the system can be described as a Bose-Einstein condensate (BEC) of exciton-polaritons, and the high density limit, where the system enters a photon-dominated regime. In contrast to the exciton BEC-BCS crossover where the system approaches an electron-hole plasma, the polariton high density limit has strongly correlated electron-hole pairs. At intermediate densities, there is a regime with BCS-like properties, with a peak at nonzero momentum of the singlet pair function. We calculate the expected photoluminescence and give several experimental signatures of the crossover.  相似文献   

3.
The condensation of electron-hole pairs is studied at zero temperature and in the presence of a weak spin-orbit coupling (SOC) in coupled quantum wells. Under realistic conditions, a perturbative SOC can have observable effects in the order parameter of the condensate. First, the fermion exchange symmetry is absent. As a result, the condensate spin has no definite parity. Additionally, the excitonic SOC breaks the rotational symmetry yielding a complex order parameter in an unconventional way; i.e., the phase pattern of the order parameter is a function of the condensate density. This is manifested through finite off-diagonal components of the static spin susceptibility, suggesting a new experimental method to confirm an excitonic condensate.  相似文献   

4.
We consider disorder effect on electron-hole pairing in the system of two graphene monolayers separated by dielectric barrier. The influence of charged impurities on temperature of phase transition is studied. In spite of large values of mobility of charge carriers in graphene disorder can considerably reduce temperature of electron-hole condensation in weak-coupling regime. The quantum hydrodynamics of the system is considered and phase stiffness of electron-hole condensate and temperature of Berezinskii-Kosterlitz-Thouless transition to the superfluid state are calculated.  相似文献   

5.
Quasi-two-dimensional electron-hole condensate has been observed at the surface of semiconductors treated by low dose Ar+ ion bombardment. A number of specific surface properties of this electron-hole condensate (EHC) has been studied.  相似文献   

6.
This is a study of the equilibrium thermodynamics of the Huang-Yang-Luttinger model of a boson gas with a hard-sphere repulsion using large deviation methods; we contrast its properties with those of the mean field model. We prove the existence of the grand canonical pressure in the thermodynamic limit and derive two alternative expressions for the pressure as a function of the chemical potential. We prove the existence of condensate for values of the chemical potential above a critical value and verify a prediction of Thouless that there is a jump in the density of condensate at the critical value. We show also that, at fixed mean density, the density of condensate is an increasing function of the strength of the repulsive interaction. In an appendix, we give proofs of the large deviation results used in the body of the paper.  相似文献   

7.
We study the metal-insulator transition in individual self-assembled quantum wires and report optical evidence of metallic liquid condensation at low temperatures. First, we observe that the temperature and power dependence of the single nanowire photoluminescence follow the evolution expected for an electron-hole liquid in one dimension. Second, we find novel spectral features that suggest that in this situation the expanding liquid condensate compresses the exciton gas in real space. Finally, we estimate the critical density and critical temperature of the phase transition diagram at n{c} approximately 1 x 10;{5} cm;{-1} and T{c} approximately 35 K, respectively.  相似文献   

8.
We apply the time-dependent variational principle of Balian-Vénéroni to a system of self-interacting trapped bosons at finite temperature. The method leads to a set of coupled non-linear time dependent equations for the condensate density, the thermal cloud and the anomalous density. We solve numerically these equations in the static case for a harmonic trap. We analyze the various densities as functions of the radial distance and the temperature. We find an overall good qualitative agreement with recent experiments as well as with the results of many theoretical groups. We also discuss the behavior of the anomalous density at low temperatures owing to its importance to account for many-body effects.  相似文献   

9.
A theory is developed on giant quantum attenuation of ultrasound in bismuth. The present theory successfully explains the following experimental results in strong magnetic fields (H 100 kG): (i) When two attenuation peaks, the one due do electrons and the other due to holes, coincide as a function of magnetic field, the attenuation is exceptionally large at temperatures around 1 K and decreases rapidly with increasing temperatures; (ii) on the contrary, an isolated attenuation peak shows only a weak temperature dependence; (iii) the line shape of an isolated hole peak is highly asymmetric. The theory includes both intraband and interband impurity scatterings, acoustic phonon scattering, and takes account of Coulomb correlation effects via electron-electron, hole-hole and electron-hole two-body distribution functions. As a result, the electron-hole attractive correlation is found to play a crucial role in making the large attenuation mentioned in (i). For (ii), the electron-hole correlation is ineffective because of the large difference in Fermi velocities, and the acoustic phonon scattering is found to be important. Finally, the result (iii) is attributed to the small density of states of the reservoir Landau subbands in the strong magnetic field regime. The present theory assumes no phase transition to account for the result (i) in contrast to previous theories.  相似文献   

10.
We show that the effective theory of long wavelength low energy behavior of a dipolar Bose-Einstein condensate(BEC) with large dipole moments (treated as a classical spin) can be modeled using an extended non-linear sigma model (NLSM) like energy functional with an additional non-local term that represents long ranged anisotropic dipole-dipole interaction. Minimizing this effective energy functional we calculate the density and spin-profile of the dipolar Bose-Einstein condensate in the mean-field regime for various trapping geometries. The resulting configurations show strong intertwining between the spin and mass density of the condensate, transfer between spin and orbital angular momentum in the form of Einstein-de Hass effect, and novel topological properties. We have also described the theoretical framework in which the collective excitations around these mean field solutions can be studied and discuss some examples qualitatively.  相似文献   

11.
We consider the ground state of an electron-hole graphene bilayer composed of two independently-doped graphene layers when a condensate of spatially separated electron-hole pairs is formed. In the weak coupling regime the pairing affects only the conduction band of the electron-doped layer and the valence band of the hole-doped layer, thus the ground state is similar to an ordinary BCS condensate. At strong coupling, an ultrarelativistic character of the electron dynamics reveals itself and the bands which are remote from Fermi surfaces (valence band of electron-doped layer and conduction band of hole-doped layer) are also affected by the pairing. Analysis of the instability of the unpaired state shows that s-wave pairing with band-diagonal condensate structure, described by two gaps, is preferable. The relative phase of the gaps is fixed, however at weak coupling this fixation diminishes allowing gapped and soliton-like excitations. The coupled self-consistent gap equations for these two gaps are solved at zero temperature in the constant-gap approximation and in the approximation of a separable potential. It is shown that, if the characteristic width of the pairing region is of the order of magnitude of the chemical potential, then the value of the gap in the spectrum is not much different from the BCS estimation. However if the pairing region is wider, then the gap value can be much larger and depends exponentially on its energy width.  相似文献   

12.
Conclusions We have analyzed coupling properties of the coupled microstrip lines whose substrate contain electron-hole plasma by means of the spectral domain method. Scattering parameters in each ports have been evaluated numerically as a function of plasma density.Experiments were carried out using high resistivity silicon and LEDs. The agreement of the theoretical and experimental results was satisfactory. The plasma density observed in the experiments is one-third as large as the theoretically estimated value.  相似文献   

13.
We have studied the electron-electron, electron-hole and the hole-hole density correlation functions of the tunneling superlattice with electrons and holes by using the tight-binding envelope functions and taking account of the nearest-neighbor overlap. Based on a newly developed matrix separation technique, these density correlation functions can be explicitly expressed in terms of a matrix density correlation function which allows for a RPA calculation. An effective matrix screened carrier-carrier potential is introduced, which together with the matrix denmty correlation functions given in this paper provides a convenient way to study excitation, transport, and other propertics of a weak tunneling superlattice with both electrons and holes.  相似文献   

14.
We have studied density-dependent time-resolved photoluminescence from a 80 A InGaAs/GaAs single quantum well excited by picosecond pulses. We succeed in giving evidence for the transition from an exciton-dominated population to an unbound electron-hole pair population as the pair density increases. For pair densities below this excitonic Mott transition we observe a spectrally separate emission from free electron-hole pairs in addition to excitonic luminescence, thereby proving the coexistence of both species. Exciton binding energy and band gap remain unchanged even near the upper bound of this coexistence region. Above the Mott density we observe a purely exponential high energy tail of the photoluminescence and a redshift of the band gap with pair density. The transition occurs gradually between 1 x 10(10) and 1 x 10(11) cm(-2) at the carrier temperatures of our experiment.  相似文献   

15.
We have studied the photoluminescence spectrum of the electron-hole gas phase in presence of electron-hole liquid in GaP. At low temperature, free excitons are clearly present. With increasing temperatures, i.e. density of the vapour phase, the exciton features evolve into a broad band shifted in energy, which we attribute to an electron-hole plasma. The results are discussed in view of an insulator-metal Mott transition.  相似文献   

16.
The local-field correction for the dielectric function of the two-dimensional and of the three-dimensional Bose condensate is calculated within a sum-rule version of the Singwi et al. (Phys. Rev.176, 589 (1968)) approach. We derive analytical expressions for small and large wave numbers and give analytical expressions for the density dependence. We compare the results of the groundstate energy for the three-dimensional system with Monte-Carlo computations. In two dimensions a roton structure in the plasmon dispersion is found at low boson density. The plasmon density of states is calculated. A correlation induced charge-density-wave instability in layered structures of two-dimensional Bose gases is discussed.  相似文献   

17.
An optimal Jastrow correlation function with intermediate- and long-range structure gives a larger condensate fraction at equilibrium density than a simple short-range correlation function. The condensate fraction is also sensitive to the potentials used in the calculation.  相似文献   

18.
Pu H  Meystre P 《Physical review letters》2000,85(19):3987-3990
We present a scheme for creating quantum entangled atomic states through the coherent spin-exchange collision of a spinor Bose-Einstein condensate. The state generated possesses macroscopic Einstein-Podolsky-Rosen correlation and the fluctuation in one of its quasispin components vanishes. We show that an elongated condensate with large aspect ratio is most suitable for creating such a state.  相似文献   

19.
Pion condensation has not previously been investigated in a theory that accounts for the known bulk properties of nuclear matter, its saturation energy and density and compressibility. We have formulated and solved self-consistently, in the mean field approximation, a relativistic field theory that possesses a condensate solution and reproduces the correct bulk properties of nuclear matter. The theory is solved in its relativistically covariant form for a general class of space-time dependent pion condensates. Self-consistency and compatibility with bulk properties of nuclear matter turn out to be very stringent conditions on the existence and energy of the condensate, but they do allow a weak condensate energy to develop. The spin-isospin density oscillations, on the other hand, can be large. It is encouraging, as concerns the possible existence of new phases of nuclear matter, that this is so, unlike the Lee-Wick density isomer, that appears to be incompatible with nuclear matter properties.  相似文献   

20.
We investigate the effect of the alignment of the magnetic moments of Cooper pairs of charged quarks that form at high density in three-flavor quark matter. The high-density phase of this matter in the presence of a magnetic field is known to be the Magnetic Color-Flavor-Locked (MCFL) phase of color superconductivity. We derive the Fierz identities of the theory and show how the explicit breaking of the rotational symmetry by the uniform magnetic field opens new channels of interactions and allows the formation of a new diquark condensate. The new order parameter is a spin-1 condensate proportional to the component in the field direction of the average magnetic moment of the pairs of charged quarks. The magnitude of the spin-1 condensate becomes comparable to the larger of the two scalar gaps in the region of large fields. The existence of the spin-1 condensate is unavoidable, as in the presence of a magnetic field there is no solution of the gap equations with nonzero scalar gaps and zero magnetic moment condensate. This is consistent with the fact that the extra condensate does not break any symmetry that has not already been broken by the known MCFL gaps. The spin-1 condensate enhances the condensation energy of pairs formed by charged quarks and the magnetization of the system. We discuss the possible consequences of the new order parameter on the issue of the chromomagnetic instability that appears in color superconductivity at moderate density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号