首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the publication of a number of contradictory assignments of the vibrational wave numbers of rotational isomers of Acrolein in the ground electronic state, the analysis of their vibrational spectra is repeated based on the previously calculated scaled ab initio force fields. With the use of the reported results that predicted the force fields of trans-acrolein in the 1(n,π*) and 3(n, π*) states at the CASSCF/cc-pVTZ level, the experimental vibrational bands are analyzed in these excited electronic states based on well-established regularities. It is noted that in the assignment of the calculated vibrational wave numbers of the molecule, the isotopic shifts in the ground and excited electronic states 1(n, π*) and 3(n, π*) are taken into account. The previously considered calculated potential curves of the internal rotation of acrolein in combination with the data on the difference in the enthalpies (ΔH 0) of conformers allow a choice to be made in favor of one of the variants of the torsional vibration wave numbers that have been reported in the literature.  相似文献   

2.
The vibrational structure of the UV absorption spectrum of acryloyl chloride vapor was analyzed to obtain detailed information about the torsional vibration levels of the trans and cis isomers in the ground (S 0) and excited (S 1) electronic states. The spectrum contained 114 absorption bands of which ~90% were assigned. The 0-0 transition frequencies of the trans and cis acryloyl chloride isomers were determined. Several Deslandres tables for torsional vibrations from the 0–0 transition frequencies and local origins corresponding to the fundamental frequencies of two isomeric molecule forms in both electronic states were constructed. The corresponding systems of torsional vibration levels were determined, and the harmonic frequencies θε and anharmonicity coefficients x 11 of the trans and cis isomers were calculated. The torsional vibration levels in the ground electronic state obtained from the vibrational structure of the UV spectrum are compared with those determined using the Fourier spectrum. The 0–3 torsional transition of the trans isomer was found to be displaced because of Fermi resonance with a fundamental frequency.  相似文献   

3.
The internal rotation potential function of the acryloyl chloride molecule in the S 0 and S 1 electronic states was reproduced using systems of torsional vibration levels obtained for its trans and cis isomers by analyzing the vibrational structure of the UV spectrum of the molecule. The kinematic factor F in the S 0 ground state was calculated including geometric parameter relaxation as a function of internal rotation angle. The torsional potential parameters in the S 0 state obtained in this work were substantially different from those determined from the infrared Fourier-transform spectrum ignoring the resonance perturbation of the level with v = 3. The form of the internal rotation potential function and the higher stability of the trans isomer (the main isomer) were substantiated by high-level quantum-mechanical calculations.  相似文献   

4.
The structures of isotopomers of conformationally flexible acetyl chloride molecule, CH3COCl and CD3COCl, in the ground (S0 and lowest excited singlet (S1) and triplet (T1) electronic states were calculated by the RHF, MP2, and CASSCF methods. The equilibrium geometric parameters and harmonic vibrational frequencies of the molecules in these electronic states were estimated. According to calculations, electronic excitation causes considerable conformational changes involving rotation of the CH3 (CD3) top and a substantial deviation of the CCOCl fragment from planarity. The results of calculations agree with experimental data. Two dimensional torsional inversion sections of the potential energy surface were calculated and analyzed. Vibrational problems for large amplitude vibrations (torsional vibration in the S0 state and both torsional and inversion vibrations in the T1 and S1 states) were solved in one- and two-dimensional approximations.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 62–70, January, 2005.  相似文献   

5.
The structural parameters of s-trans- and s-cis-isomers of a methacrolein molecule in the ground (S0) electronic state are determined by means of MP2 method with the cc-pVTZ basis set. Kinematic factor F(φ) is expanded in a Fourier series. The potential function of internal rotation (PFIR) of methacrolein in this state is built using experimental frequencies of transitions of the torsional vibration of both isomers, obtained from an analysis of the vibrational structure of the high-resolution UV spectrum with allowance for the geometry and difference between the energy (ΔH) of the isomers. It is shown that the Vn parameters of the potential function of internal rotation of the molecule, built using the frequencies of the transition of the torsional vibrations of s-trans- and s-cis-isomers of the methacrolein molecule, determined from vibrational structure of the high-resolution UV spectrum and the FTIR spectrum, are close.  相似文献   

6.
An analysis of the vibrational structure of the UV spectrum of methacryloyl chloride vapor was performed. The spectrum contained unique information about the torsional vibration levels of the trans and cis isomers in the ground (S 0) and excited (S 1) electronic states. 136 absorption bands were revealed, and ~85% of them were assigned. The 0-0 transition frequencies of the trans and cis isomers were found. Several Deslandres tables were constructed for torsional vibrations from 0-0 transition frequencies and “local origins” corresponding to fundamental and combined frequencies of both isomers. Systems of torsional levels up to high quantum number values (v ≈ 6–8) were determined, and the ωe harmonic frequencies and χ 11 anharmonicity coefficients were calculated for both isometric forms in the ground (S 0) and excited (S 1) states. The results were substantially different from those obtained in an analysis of Fourier-transform IR spectra.  相似文献   

7.
Making use of a set of quantum chemistry methods, the harmonic potential surfaces of the ground state (S0(1 A g)) and the first (S1(1 B 3u)) excited state of pyrazine are investigated, and the electronic structures of the two states are characterized. In the present study, the conventional quantum mechanical method, taking account of the Born-Oppenheimer adiabatic approximation, is adopted to simulate the absorption spectrum of S1(1 B 3u) state of pyrazine. The assignment of main vibronic transitions is made for S1(1 B 3u) state. It is found that the spectral profile is mainly described by the Franck-Condon progression of totally symmetric mode ν6a. For the five totally symmetric modes, the present calculations show that the frequency differences between the ground and the S1(1 B 3u) state are small. Therefore the displaced harmonic oscillator approximation along with Franck-Condon transition is used to simulate S1(1 B 3u) absorption spectra. The distortion effect due to the so-called quadratic coupling is demonstrated to be unimportant for the absorption spectrum, except the coupling mode ν10a. The calculated S1(1 B 3u) absorption spectrum is in reasonable agreement with the experimental spectra. Supported by Taiwan National Science Council (Grant Nos. NSC 96-2113-M-009-021 and NSC 96-2811-M-009-023)  相似文献   

8.
Matrix isolation IR spectroscopy and quantum-chemical calculations were jointly used to identify the system of bands related to Ni3 clusters. The positions of two low-lying electronic states were determined, and vibrational frequencies and geometry in the ground and excited states were estimated. In all the calculated states, Ni3 had the structure of an isosceles triangle. In the X 3 B 2 ground and a 3 B 1 lower excited states, this was an acute-angled triangle. In the b 3 B 2 and c 3 B 1 excited states, the triangle was obtuse-angled.  相似文献   

9.
B3LYP, MP2, CCSD(T), and MP4/MP2 in the 6-311G(d, p), 6-311++G(d, p), cc-pVTZ, aug-cc-pVTZ bases used to calculate the transition frequencies of torsional vibration of trans- and cis-isomers of acrolein in the ground electronic state (S 0) are analyzed. It is found that for trans-isomers, all methods of calculation except for B3LYP in the cc-pVTZ basis yield good agreement between the calculated and experimental values. It is noted that for the cis-isomer of acrolein, no method of calculation confirms the experimental value of the frequency of torsional vibration (138 cm?1). It is shown that the calculated and experimental values for obertones at 273.0 cm?1 and other transitions of torsional vibration are different for this isomer in particular. However, it is established that in some calculation methods (B3LYP, MP2), the frequency of the torsional vibration of the cis-isomer coincides with another experimental value of this frequency (166.5 cm?1). It is concluded that in analyzing the vibrational structure of the UV spectrum, the calculated and experimental values of its obertone (331.3 cm?1) coincide, along with its frequency. It is also noted that the frequency of torsional vibration for the cis-isomer (166.5 cm?1) can also be found in other experimental works if we change the allocation of torsional transition 18 1 1 .  相似文献   

10.
The UV absorption spectrum of methacryloyl fluoride molecule in the gas phase is obtained in the wavenumber range of 32300–35900 cm?1. The resolved vibrational structure of this spectrum consists of 153 absorption bands. The assignment of all bands has been made for the first time. Values ν00trans = 35670.0 сm?1 and ν00cis = 35371.1 cm?1 are determined. The fundamental frequencies for isomers in the S0 and S1 states are found. Several Deslandres Tables (DTs) are constructed for the torsional vibration of the s-trans- and s-cis-isomers of the investigated molecule using the NONIUS program. The origins in these DTs correspond to bands attributed to ν00, and to the fundamental frequencies of each isomer in states S0 and S1. These DTs are used to determine harmonic frequencies ωe, anharmonicity coefficients х11, and the frequencies of torsional vibration 0–v transitions up to high values of vibrational quantum number v for s-trans- and s-cis-isomers in both electronic states. The frequencies of torsional vibrations for the s-trans-isomer and the s-cis-isomer in the S0 state are ν″1 = 80.9 сm?1 and ν″1 = 59.8 сm?1, respectively. The frequencies for the s-trans- isomer and the s-cis-isomer in the S1 state are ν′1 = 134.1 сm?1 and ν′1 = 103.6 cm?1, respectively.  相似文献   

11.
Methane-intercalated fullerite (CH4)0.56C60 was obtained by low-temperature precipitation from solution. Methane transition from the gas phase to the octahedral void of fullerite is accompanied by a bathochromic shift of normal vibrational frequencies (by 19 and 8 cm−1 for ν3 and ν4, respectively). The methane 13C signal in the proton decoupling 13C NMR spectrum is observed as a singlet at δ−0.42. According to quantum chemical calculations using density functional theory, location of methane in the octahedral void of fullerite (C60)6 leads to a decrease in the total energy of fullerite by 4 kcal mol−1.  相似文献   

12.
The reaction of N-(diisopropoxyphosphorothioyl)-N′,N′-dimethylthiourea [Me2NC(S)NHP(S)(OPr-i)2, HL) potassium salt with Co(II) cation in aqueous ethanol gave the chelate complex Co(L-S,S′)2(CoL2). The structure of the resulting compound was studied by means of IR spectroscopy, microanalysis, and X-ray analysis. The metal center was found to occur in a tetrahedral S4 environment formed by the C=S and P=S sulfur atoms of two deprotonated ligands L. Magnetic properties of the complex CoL2 were also studied.  相似文献   

13.
Within the framework of the density functional theory (DFT), the electronic structure of monooxodioxovanadium functional groups in tetrahedral coordination, which model the active centers (ACs) of fine supported catalysts V2O5/SiO2 and V2O5/TiO2, has been analyzed. The optimal structures of three ACs as possible models of monomeric and polymeric oxovanadium forms on the carriers with low vanadium content were determined. The modified DFT method involving the time dependence of Kohn-Sham equation (TDDFT) was used for the adopted AC models to calculate the energies of the excited states, and optical spectra of the absorption in 25000–60000 cm?1 region were reconstructed on their base. The spectrum in this region is due to O → V charge transfer. The features of electronic spectra with the charge transfer for V2O5/SiO2 and V2O5/TiO2 catalysts and the vibrational spectra of three AC models corresponding to the monomeric and dimeric oxovanadium forms of the supported catalysts V2O5/SiO2 and V2O5/TiO2 were defined. The detailed interpretation of normal vibration frequencies is given. The frequencies typical of the monomeric and dimeric oxovanadium forms on the carrier surface were identified.  相似文献   

14.
A systematic quantum mechanical study of the possible conformations, their relative stabilities, vibrational and electronic spectra and thermodynamic parameters of methyl-3-methoxy-2-propenoate has been reported for the electronic ground (S0) and first excited (S1) states using time-dependent and time-independent Density Functional Theory (DFT) and RHF methods in extended basis sets. Detailed studies have been restricted to the E-isomer, which is found to be substantially more stable than the Z-isomer. Four possible conformers c′Cc, c′Tc, t′Cc, t′Tc, of which the first two are most stable, have been identified in the S0 and S1 states. Electronic excitation to S1 state is accompanied with a reversal in the relative stability of the c′Cc and c′Tc conformers and a substantial reduction in the rotational barrier between them, as compared with the S0 state. Optimized geometries of these conformers in the S0 and S1 states are being reported. Based on suitably scaled RHF/6-31G** and DFT/6-311G** calculations, assignments have been provided to the fundamental vibrational bands of both these conformers in terms of frequency, form and intensity of vibrations and potential energy distribution across the symmetry coordinates in the S0 state. A complete interpretation of the electronic spectra of the conformers has been provided.  相似文献   

15.
The structure of the conformationally nonrigid fluoral molecule (CF3CHO) in the ground (S0) and lowest excited triplet (T1) and singlet (S1) electronic states was studied by ab initio quantum-chemical methods. The equilibrium geometric parameters and harmonic vibrational frequencies of the molecule in these electronic states were determined. The calculations demonstrated that the electronic excitation causes substantial changes in the molecular structure involving the rotation of the CF3 top and the deviation of the CCHO carbonyl fragment from planarity. The quantum-mechanical problems for large-amplitude vibrations, namely, for the torsional vibration in the S0 state and the torsional and inversion vibrations (nonplanar carbonyl fragment) in the T1 and S1 states, were solved in the one- and two-dimensional approximations. A comparison of the results of calculations revealed the correlation between the torsional and inversion motions.  相似文献   

16.
The geometrical, electronic, and thermodynamic parameters of three known isomers of dinitrogen trioxide N2O3 were calculated by the density functional theory DFT/B3LYP method using the 6-311++G(3df) basis. The structure of the new isomer, NONO2, was calculated. From the calculation of vibrational frequencies it follows that the structure of NONO2 has a local potential energy minimum and corresponds to the stationary state of the N2O3 isomer. The molecular structure of NONO2 is characterized by a substantial negative charge on the NO2 fragment and positive charge on the NO fragment. The electronic structure of the NO+NO 2 ? isomer can be characterized as nitrosonium nitrite, which can be oxidized to nitrite and participate in nitrosylation in accordance with the biogenic characteristics of the NO x intermediate, assumed to be formed in biological systems during the oxidation of NO.  相似文献   

17.
One new metal – organic coordination framework formulated as [{Cu(4,4′-bipy)(CH3COO)2}·3H2O]n (1) (where 4,4′-bipy=4,4′-bipyridine) has been hydrothermally synthesised and characterised by elemental analysis, IR and electronic spectroscopy, variable temperature magnetic moment measurement and single crystal X-ray diffraction study. Single crystal X-ray analysis reveals that 1 is one dimensional polymeric compound in which acetate ligand shows both mono- and bidentate bonding mode, and 4,4′-bipy acts as bridging ligand which supports the formation of infinite chains. The global feature of the χ M T vs. T curve in 1 is characteristic of moderate antiferromagnetic interaction and the best fit parameters from 300 down to 2 K are found as J = −78.7 cm−1.  相似文献   

18.
The polymetallic [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl](PF6)2 complex (bpy = 2,2′-bipyridine, BPE = trans-1,2-bis(4-pyridil)ethylene and py = pyridine) was assembled by the combination of an electroactive [Ru3O] moiety with a [Ru(bpy)2(BPE)Cl] photoactive centre, and its structure was determined using positive ion electrospray (ESI-MS) and tandem mass (ESI-MS/MS) spectrometry. The [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl]2+ doubly charged ion of m/z 732 was mass-selected and subject to 15 eV collision-induced dissociation, leading to a specific dissociation pattern, diagnostic of the complex structure. The electronic spectra display broad bands at 409, 491 and 692 nm ascribed to the [Ru(bpy)2(BPE)] charge-transfer bands and to the [Ru3O] internal cluster transitions. The cyclic voltammetry shows five reversible waves at −1.07 V, 0.13 V, 1.17 V, 2.91 V and −1.29 V (vs SHE) assigned to the [Ru3O]−1/0/+1/+2/+3 and to the bpy0/−1 redox processes; also a wave is observed at 0.96 V, assigned to the Ru+2/+3 pair. Despite the conjugated BPE bridge, the electrochemical and spectroelectrochemical results indicate only a weak coupling through the π-system, and preliminary photophysical essays showed the compound decomposes under visible light irradiation.  相似文献   

19.
Effect of the wavelength of excitation light (λex) on the fluorescence excitation and emission spectra of 5-fluorouracil in acidic solution (pH 2.5) was studied upon excitation at the S 2S 0-transition absorption band. It has been found that direct excitation at the second or the shorter wavelength absorption band results in 5-fluorouracil fluorescence that originates not only from the first excited state S 1 but is also due the transition from the second excited state S 2 to the ground state.  相似文献   

20.
Complexation between crystalline trans-[Pd(H2O)2(NO3)2] and acetylacetone was studied. The complexes Pd2(Acac)2(μ-NO3)2(I) and Pd2(Acac)2(μ-Acac)(μ-NO3)(II) were obtained and examined by elemental analysis, X-ray powder diffraction analysis, differential scanning calorimetry, simultaneous thermal analysis, mass spectrometry, and vibrational spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号