首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The quaternary compound SnSbBiS4 formed in the SnSb2S4-SnBi2S4 system at the ratio SnSb2S4: SnBi2S4 = 1: 1 was studied for the first time by various physicochemical methods over a wide temperature interval. Single crystals of SnSbBiS4 were prepared by chemical transport. The unit cell parameters of SnSbBiS4, which crystallized in the hexagonal system (a = 15.52 ?, c = 3.81 ?), were determined.  相似文献   

2.
The Tl2S-Sb2S3-Bi2S3 quasi-ternary system (system A) was studied using DTA, X- ray powder diffraction, microstructure examination, and microhardness measurements. TlSbS2-Tl4Bi2S5(TlBiS2, Bi2S3), Sb2S3-TlBiS2, Tl3SbS3-TlBiS2(Bi2S3), and [TlSb0.5Bi0.5S2]-Tl2S isopleths; isothermal sections at 500 K; and liquidus surface projection of system A were constructed. Characteristic features of the title system are extensive fields of solid solutions extended along the TlSbS2-TlBiS2 quasi-binary section and a continuous solubility belt 1–2 mol % wide extended along the Sb2S3-Bi2S3 binary subsystem. Primary separation fields of phases and the types and coordinates of invariant and monovariant equilibria in system A were determined.  相似文献   

3.
Phase equilibria in the EuS-Cu2S-Nd2S3 system were studied in an isothermal (970 K) section and NdCuS2-EuS and Cu2S-EuNdCuS3 polythermal sections. The complex sulfide EuNdCuS3 has an orthorhombic crystal lattice (space group Pnma; a = 1.10438(2) nm, b = 0.40660(1) nm, c = 1.14149(4) nm), is isostructural to BaLaCuS3, and melts incongruently at 1470 K: EuNdCuS3 (0.50 EuS; 0.50 NdCuS2) ai 0.18 EuS ss (0.88 EuS; 0.12 NdCuS2) + 0.82 L (0.415 EuS; 0.585 NdCuS2); ΔH = 17.8 kJ/mol. Within the range 0.5 mol % EuS, EuNdCuS3-based solid solutions were not found. At 970 K, the tie lines pass from the compound EuNdCuS3 to Cu2S, EuS, NdCuS2, and EuNd2S4 phases and lie between the NdCuS2 phase and solid solutions (ss) of γ-Nd2S3 with EuNd2S4. Eutectics are formed between the compounds NdCuS2 and EuNdCuS3 at 32.0 mol % EuS T = 1318 K and between the compounds Cu2S and EuNdCuS3 at 20.5 mol % EuNdCuS3 and T = 1142 K. Five main subordinate triangles were identified in the system.  相似文献   

4.
The chemistry and thermodynamics of vaporization of CdGa2S4(s), CdGa8S13(s), and Ga2S3(s) were studied by computer-automated, simultaneous Knudsen-effusion and torsion-effusion, vapor pressure measurements in the temperature range 967–1280 K. The vaporization was incongruent with loss of Cd(g) + 1/2 S2(g) and production of CdGa8S13(s), a previously unknown compound, in equilibrium with CdGa2S4(s), until the solid became CdGa8S13 only. Then, incongruent vaporization continued with production of Ga2S3(s) until the solid was Ga2S3 only. The latter vaporized congruently. The ΔH°(298 K) of combination of one mole of CdS(s) with one mole of Ga2S3(s) to give CdGa2S4(s) was ?22.6 ± 0.9 kJ mole?1. The 2H2(298 K) of combination of one mole of CdS(s) with four moles of Ga2S3(s) to give CdGa8S13(s) was ?25.5 ± 1.1 kJ mole?1. The 2H2(298K) of CdGa8S13(s) with respect to disproportionation into CdGa2S4(s) and 3 Ga2S3(s) was ?2.8 ± 0.6 kJ mole?1. CdGa8S13(s) was not observed at room temperature. The 2H2(298 K) of vaporization of the residual Ga2S3(s) was 663.4 ± 0.8 kJ mole?1, which compared well with a value of 661.4 ± 0.3 kJ mole?1 already available from the literature. Implications of small variations in stoichiometry of compounds in this study were observed and are discussed.  相似文献   

5.
In the SrS-Ga2S3 system, there exist two individual compounds: SrGa2S4 (a = 2.084 nm, b = 2.050 nm, c = 1.220 nm; congruent melting at 1530 K) and Sr2Ga2S5 (a = 1.253 nm, b = 1.203 nm, c = 1.117 nm; peritectic melting at 1330 K); both are orthorhombic. We discovered a compound of composition Sr4Ga2S7; this compound crystallizes in cubic system with the unit cell parameter a = 0.6008 nm, space group Pa3, and decomposes by a solid-phase reaction at 870 K. Eutectic compositions are 42 and 73 mol % Ga2S3; eutectic melting temperatures are 1210 and 1170 K, respectively. The SrS solubility in γ-Ga2S3 at 1070 K reaches 4 mol %.  相似文献   

6.
The interactions in the GeS2-Cr2S3 and Cu2GeS3-Cr2S3 sections were studied by differential thermal analysis and X-ray powder diffraction. The GeS2-Cr2S3 section was shown to be quasi-binary, with a degenerate eutectic; no ternary compound was formed. In the Cu2GeS3-Cr2S3 section, a quaternary phase of variable composition having a homogeneity range of 69–75 mol % Cr2S3 crystallized in the cubic system. The samples of this composition are spin glasses with freezing temperatures of 20–25 K.  相似文献   

7.
The PbSnS2-PbSb2S4 system was studied by physicochemical methods, and its phase diagram was plotted. The system is quasi-binary; solid solutions regions based on PbSnS2 (6 mol % PbSb2S4) and PbSb2S4 (12 mol % PbSnS2) were revealed. At a component ratio of 1: 1, a congruently melting compound Pb2SnSb2S6 is formed. Pb2SnSb2S6 single crystals were obtained by chemical transport. The unit cell parameters of Pb2SnSb2S6, which crystallizes in orthorhombic system, were determined: a = 15.22 ?, b = 10.68 ?, c = 3.90 ?.  相似文献   

8.
The isostructural alkali thioferrate compounds CsFe2S3, RbFe2S3 and KFe2S3 have been synthesized by reacting Fe and S with their corresponding AFeS2 (A=K, Rb, Cs) precursors. The crystal structures of these and binary compounds of intermediate composition were determined by Rietveld analysis of laboratory powder X-ray diffraction patterns. All of the synthesized compounds adopt the space group Cmcm (#63), Z=4 with: a=9.5193(8) Å, b=11.5826(10) Å, c=5.4820(4) Å for CsFe2S3; a=9.2202(7) Å, b=11.2429(9) Å, c=5.4450(3) Å for RbFe2S3; and a=9.0415(13) Å, b=11.0298(17) Å, c=5.4177(6) Å for KFe2S3. These mixed valence alkali thioferrates show regular changes in cell dimensions, AS10 (A=K, Rb, Cs) polyhedron volumes, polyhedron distortion parameters, and calculated oxidation state of Fe with respect to increasing size of the alkali element cation. The calculated empirical oxidation state of iron varies from +2.618 (CsFe2S3), through +2.666 (RbFe2S3) to +2.77 (KFe2S3).  相似文献   

9.
Sb2S3/Bi2S3 doped TiO2 were prepared with the coordination compounds [M(S2CNEt)3] (M=Sb, Bi; S2CNEt=pyrrolidinedithiocarbamate) as precursors via gel-hydrothermal techniques. The doped TiO2 were characterized by XRD, SEM, XPS and UV-vis diffuse reflectance means. The photocatalyst based on doped TiO2 for photodecolorization of 4-nitrophenol (4-NP) was examined. The optimal Bi2S3/Sb2S3 content, pH and different doped techniques have been investigated. Photocatalytic tests reveal that M2S3 doped TiO2 via the gel-hydrothermal route performs better photocatalytic activity for photodegradation reaction of 4-nitrophenol (4-NP).  相似文献   

10.
U3S5 has been prepared by chemical transport reaction and investigated using X-ray powder diffraction, FTIR spectroscopy, electrical resistivity measurements, and X-ray photoelectron spectroscopy. U3S5 is a semiconductor with a thermal band gap Eg=78.1(4) meV (298 K<T<50 K), which closes gradually to 3.4(4) meV for T<25 K. Photoelectron spectroscopy on single crystals of U3S5 and β-US2 suggest a mixed valency of uranium in U3S5. Physical and structural data are consistent with a mixed-valent model (U3+)2U4+ (S2−)5. A brief survey of literature data on crystal structure and physical properties of uranium sulfides and selenides is given.  相似文献   

11.
The Pb5Sb4S11-Pb2SnSb2S6 system was studied by a number of physicochemical methods, and its phase diagram was constructed. It was found that the system under investigation is a quasi-binary eutectic type section of the SnS-PbS-Sb2S3 ternary system. The coordinates of the eutectic are found to be 33 mol % Pb5Sb4S11 and 750 K. Regions of solid solutions based on Pb5Sb4S11 (6 mol % Pb2SnSb2S6) and Pb2SnSb2S6 (4 mol % Pb5Sb4S11) were determined.  相似文献   

12.
The phase diagrams of the quaternary systems MSCr2S3In2S3, with M = Co, Cd, and Hg, were studied with the help of X-ray powder photographs of quenched samples, high-temperature X-ray diffraction patterns, DTA and TG measurements, and far-infrared spectra. Because indium sulfides do react with silica tubes, alumina crucibles must be used for annealing the samples. Complete series of mixed crystals are formed among the spinel-type compounds MCr2S4, MIn2S4 (M = Cd, Hg), and In2S3. HgIn2S4 is decomposed at temperatures above 300°C. In the sections CoCr2S4CoIn2S4 and CoCr2S4In2S3 relatively large miscibility gaps exist due to the change from normal to inverse spinel structure. But the interchangeability of both systems increases with increasing temperature, and at temperatures above 1000°C, complete series of solid solutions are formed, which can be quenched to ambient temperature. Superstructure ordering like that of ordered α-In2S3 has been found in the In-rich region of the MIn2S4In2S3 solid solutions. The unit cell dimensions of all stoichiometric and phase boundary compounds, e.g., Cd1.15In1.9S4, including the chromium spinels MCr2S4 (M = Mn, Zn) and ZnCr2Se4, are given and discussed in terms of possible deviations from stoichiometry.  相似文献   

13.
Crystal structures of the ordered phases of V3S4 and V5S8 were refined with single crystal data. Both are monoclinic. Chemical compositions, space groups and lattice constants are as follows: VS1.47, I2m (No. 12), a = 5.831(1), b = 3.267(1), c = 11.317(2)Å, β = 91.78(1)° and VS1.64, F2m (No. 12), a = 11.396(11), b = 6.645(7), c = 11.293(4), Å, β = 91.45(6)°. In both structures, short metal-metal bonds were found between the layers as well as within them. In comparison with the structure of Fe7S8, the stability of NiAs-type structure was discussed based on the detailed metal-sulfur distances.  相似文献   

14.
Alloys in the As2S3-TlAs2S2Se2 section of the As2S3-As2Se3-TlS ternary system were studied and a phase diagram was constructed using physicochemical methods (differential thermal analysis, microstructural analysis, X-ray powder diffraction, also microhardness and density measurements). The diagram in the As2S3-TlAs2S2Se2 section is a non-quasi-binary diagonal section of the As2S3-As2Se3-TlSe quasi-ternary system. It was found that all the alloys in the section under ordinary conditions are obtained in the vitreous state. At low As2S3 concentrations in the section, solid solutions form up to 2.5 mol %, and at low TlAs2S2Se2 concentrations, their extent is 3 mol %.  相似文献   

15.
利用水热法制备一维TiO2纳米棒阵列,并采用化学浴沉积法(CBD)结合自组装技术在TiO2纳米棒上敏化Bi2S3量子点,形成TiO2/Bi2S3复合纳米棒阵列。系统研究了复合结构的表面形貌、晶体结构、光学及光电性能。结果表明:在修饰有三氨丙基三乙氧基硅烷自组装单分子膜(APTS-SAMs)的TiO2纳米棒表面形成一层致密的Bi2S3量子点敏化层,这一技术的关键是含-NH2末端的APTS-SAMs可有效促进Bi2S3的异相成核作用;Bi2S3的沉积时间对复合结构的光吸收及光电响应性能有决定性的影响,薄膜的光电流随着沉积时间呈先增加后减小的趋势,在沉积时间为20min时,光电流密度最大。这是因为随着沉积时间的增加,TiO2纳米棒表面Bi2S3量子点密度增大,光吸收增加;而当沉积时间进一步延长时,Bi2S3在TiO2纳米棒表面的大量负载而形成堆积和团聚,导致表面缺陷增多,光生电子复合几率增大,从而使光电流密度减小。  相似文献   

16.
Electrical conductivity measurements of Th3P4-type EuLn2S4 (Ln = LaGd) compounds have been made as functions of temperature and sulfur vapor pressure. These compounds are all p-type semiconductors, and their conductivities at room temperature have almost the same values for the specimens from EuLa2S4 to EuNd2S4 but increase on going from EnNd2S4 to EuGd2S4. In addition, the conductivity of EuGd2S4 is sensitive to sulfur vapor pressure and obeys the relationship σ ∝ P16S2. The mechanism of electrical transport in these compounds is discussed.  相似文献   

17.
利用水热法制备一维TiO2纳米棒阵列,并采用化学浴沉积法(CBD)结合自组装技术在TiO2纳米棒上敏化Bi2S3量子点,形成TiO2/Bi2S3复合纳米棒阵列.系统研究了复合结构的表面形貌、晶体结构、光学及光电性能.结果表明:在修饰有三氨丙基三乙氧基硅烷自组装单分子膜(APTS-SAMs)的TiO2纳米棒表面形成一层致密的Bi2S3量子点敏化层,这一技术的关键是含-NH2末端的APTS-SAMs可有效促进Bi2S3的异相成核作用;Bi2S3的沉积时间对复合结构的光吸收及光电响应性能有决定性的影响,薄膜的光电流随着沉积时间呈先增加后减小的趋势,在沉积时间为20 min时,光电流密度最大.这是因为随着沉积时间的增加,TiO2纳米棒表面Bi2S3量子点密度增大,光吸收增加;而当沉积时间进一步延长时,Bi2S3在TiO2纳米棒表面的大量负载而形成堆积和团聚,导致表面缺陷增多,光生电子复合几率增大,从而使光电流密度减小.  相似文献   

18.
Spinel compounds of the composition Fe1+xCr2?xS4, with 0 ≦ x ≦ 0.5, have been prepared in polycrystalline form. The ionic distribution Fe2+[Cr3+2?xFe3+x]S2?4 is derived from both X-ray and 57Fe Mo¨ssbauer data. Room temperature Mo¨ssbauer spectra show the typical behavior of tetrahedral-site Fe2+ surrounded by different octahedral-site neighbors. Octahedral-site Fe3+ absorbs as a doublet with Δ ≈ 0.5 mm/s. Samples of overall composition FeCr2S4 consist mainly of a spinel Fe2+[Cr3+2?yFe3+y]S2?4, y ≈ 0.02.  相似文献   

19.
Slow crystallization of an HCl solution containing cucurbituril (C36H36N24O12) and a triangular molybdenum cluster aqua complex [Mo3S4(aq)]4+ yielded a supramolecular adduct of { [Mo3S4(H2O)7Cl2]×(C36H36N24O12)Cl2·10H2O composition. The molecular and crystal structure of the adduct were established by single crystal X-ray diffraction. Monoclinic crystal system, space group P21/c, a = 21.4762(2) Å, b = 14.6853(1) Å, c = 24.6480(3) Å; β = 112.8366(5)°, V cell = 7164.26(12) Å3, Z = 4, ρcalc = 1.725 g/cm3.Original Russian Text Copyright © 2004 by E. V. Chubarova, D. G. Samsonenko, J. H. Platas, M. N. Sokolov, and V. P. Fedin__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 5, pp. 950–954, September–October, 2004.  相似文献   

20.
The electronic structure of N4S4 and N4S4F4 molecules is investigated within the framework of the CNDO/2 approximation. A pure alternated system is obtained for the fluorinated compound with respect to the Wiberg bond populations. On the other hand, the N4S4 molecule appears to be composed of three highly delocalized “islands”, as defined by Dewar in the case of cyclophosphazenes. The “tub form” of N4S4 is due to a strong spatial interaction between non-bonded sulphur atoms and, for this reason, the N4S4 molecule may be called the “inorganic cyclooctatetraene”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号