首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Bi doped lanthanum manganites with the chemical composition of La0.67−xBixCa0.33MnO3 (x=0x=0, 0.05, 0.1, 0.2) were prepared by the standard solid-state process. The Curie temperatures were measured to be 267 K for x=0x=0, 248 K for x=0.05x=0.05, 244 K for x=0.1x=0.1 and 229 K for x=0.2x=0.2 samples. It was found that the maximum value of the magnetic entropy change ∣ΔSm∣ has reached the highest value of 6.08 J/kg K at 3 T for the composition with x=0.05x=0.05. Nearly the same maximum entropy change was observed for the x=0x=0 sample. A large decrease in the magnitude of the entropy change was observed for the x=0.2x=0.2 sample.  相似文献   

2.
Magnetic and optical properties of FexCo3−xO4 thin films grown by sol–gel method have been investigated as the Fe composition (x  ) increases from 0 to 2. X-ray diffraction measurements revealed that the normal- and inverse-spinel phases coexist for 0.76?x?0.930.76?x?0.93. The normal-spinel phase is dominant below x=0.76x=0.76 while the inverse-spinel phase above x=0.93x=0.93. The lattice constant of the inverse-spinel phase is found to be larger than that of the normal-spinel phase. For both phases the lattice constant increases with increasing x. The FexCo3−xO4 films containing the inverse-spinel phase exhibit net magnetization that increases with increasing x  . Conversion electron Mössbauer spectrum measured on the x=0.93x=0.93 sample showed that Fe2+ ions prefer the octahedral sites, indicating the formation of the inverse-spinel phase. Analysis on the measured optical absorption spectra for the samples by spectroscopic ellipsometry indicates a dominance of the normal-spinel phase for low x in which Fe3+ ions mostly occupy the octahedral sites. Observation of a crystal-field transition at 1.6 eV originating from tetrahedral Fe3+ ion confirms the existence of the inverse-spinel phase for high x.  相似文献   

3.
Mg0.7Zn0.3SmxFe2−xO4 ferrites were prepared by the solid-state reaction method and were characterized by X-ray diffraction and magnetization measurements. A single spinel phase was obtained in the range 0.00?x?0.030.00?x?0.03. The lattice parameter was found to increase at x=0.01x=0.01 and then decreases up to x=0.03x=0.03, which may indicate a distortion in the spinel lattice. The saturation magnetization was found to decrease with the increase in x up to 0.04, due to the replacement of the Fe3+ ions by the Sm3+ ions.  相似文献   

4.
FCC (Fe55Ni45)1−xCx   supersaturated solid solution was prepared in a wide concentration range (0?x?0.9)(0?x?0.9) by mechanical alloying of nanocrystalline Fe55Ni45 with graphite. The lattice constant of Fe55Ni45 increases linearly with increasing carbon content up to x=0.25x=0.25. At the same time, it is found that the magnetic moment per metal atom (Fe, Ni) decreases linearly with increasing carbon content for 0?x?0.250?x?0.25 with a slope of 1.2 μB/at. For high carbon content, x?0.5x?0.5, it is observed that the decrease of lattice constant and increase of moment per metal atom (Fe, Ni) with increasing C content, indicates that the dissolution of carbon is hindered by the high-volume fraction of graphite in the initial powder mixture. The complete amorphization of x=0.5x=0.5 does not occur after the extended ball milling. The alloying effect of carbon on the magnetization is compared with other metalloid B, P, and Si in Fe- and Ni-based binary system.  相似文献   

5.
The crystal structure and magnetocaloric effect of Gd5SixSn4−x   (with x=2.4x=2.4, 2.6 and 2.8) alloys were studied by means of X-ray power diffraction (XRD) and magnetic measurements. From the XRD results, these alloys adopt a Gd5Si4-type structure for x=2.8x=2.8, Gd5Si4-type and Gd5Si2Ge2-type mixed structures for x=2.4x=2.4 and 2.6, while some minor phases can also be found. The Curie temperatures of the Gd5SixSn4−x increases gradually when x increases from 276 K for x=2.4x=2.4, to 301.5 K for x=2.8x=2.8. Magnetic entropy changes of these alloys at a magnetic field change of 0–1.8 T are 1.88, 2.26 and 1.69 J/kg K for x=2.4x=2.4, 2.6 and 2.8, respectively. The temperature-dependent XRD analysis shows that there is no crystallographic transition for these alloys, which can explain their low magnetic entropy changes.  相似文献   

6.
Polycrystalline samples of Laves-phase alloys Dy(Co1−xFex)2(x=0x=0, 0.02,0.04,0.06,0.08) have been prepared by arc-melting method. No first order phase transition was observed for samples with x≠0x0. With the increase of Fe content, the Curie temperature increases greatly, while the calculated magnetic entropy change, ΔSM, shows an obvious decrease with a broader peak. The origin of the magnetocaloric effect in Dy(Co1−xFex)2 alloys has been discussed.  相似文献   

7.
Under various amplitude of AC magnetic fields domain wall motion is the main mechanism in the magnetization process. This includes domain wall bulging and domain wall displacing. In this paper complex permeability-frequency spectra of (Fe1−xCox)73.5Cu1Nb3Si13.5B9 (x=0,0.5x=0,0.5) nanocrystalline alloys were measured as a function of the AC magnetic field, ranging from 0.001 to 0.04 Oe. Obvious changes have been found in complex permeability spectra for alloy x=0x=0 with the change of the amplitude of AC magnetic field, but variation of AC magnetic field has little effect on complex permeability spectra for alloy x=0.5x=0.5. This is attributed to the increased pinning field after substitution of Fe with Co in Fe73.5Cu1Nb3Si13.5B9 nanaocrystalline alloy.  相似文献   

8.
The structural and magnetic properties of Nd1−xTbxFe10.5Mo1.5 (x=0x=0, 0.2, 0.4, 0.6, 0.8, 1.0) compounds have been investigated by means of X-ray diffraction and magnetic measurements. All the investigated compounds crystallize in the tetragonal ThMn12-type structure with I4/mmm space group. The lattice parameters a, c and the unit-cell volume V decrease with increasing x. The Curie temperatures TC are almost independent x. There exists a unique spin-reorientation transition for the end compositions of Nd1−xTbxFe10.5Mo1.5 compounds with x=0x=0 and x=1x=1, while two spin-reorientation transitions are observed for x=0.2–0.8x=0.20.8. The room-temperature magnetocrystalline anisotropy of Nd1−xTbxFe10.5Mo1.5 compounds changes from uniaxial to planar with increasing x content. Based on magnetic measurements, a magnetic phase diagram of Nd1−xTbxFe10.5Mo1.5 compounds is constructed. By minimizing the magnetocrystalline anisotropy energy, a theoretical magnetic phase diagram for the Nd1−xTbxFe10.5Mo1.5 system is derived, showing a reasonable agreement with the observations.  相似文献   

9.
Magnetic anisotropies in FeCo fine particles   总被引:1,自引:0,他引:1  
 The single-domain particles, especially FeCo fine particles have many applications in magnetic information technology. We have prepared Fe1−xCox fine particles for different x by borohydride method and measured the magnetic and structural properties of the samples. We have then determined the variations of coercivity and anisotropy energy versus x in Fe1−xCox fine particles. The obtained results have been analyzed on the basis of various magnetic anisotropies. Magnetic anisotropies affect the coercivity of the medium for each x   as follows: shape and crystal anisotropies for x=0x=0, surface and crystal anisotropies for x=1x=1, shape, induced and crystal anisotropies for x=0.3x=0.3 and 0.5, and shape and induced anisotropies for x=0.45x=0.45.  相似文献   

10.
The linear and nonlinear AC susceptibility as a function of temperature were measured on LaMn1−xCuxO3 compounds for x=0.05–0.30x=0.050.30. Samples with x?0.10x?0.10 exhibit paramagnetic to ferromagnetic transitions followed by low temperature spin glass like transition. The linear susceptibility exhibits strong frequency dependence and is analyzed in terms of standard theoretical model for spin glass. The magnitude and peak temperature of nonlinear susceptibility vary with AC field amplitudes. They are analyzed in terms of critical behaviour in the vicinity of spin glass transition temperature and the critical exponent is found to be 3.2.  相似文献   

11.
We have studied the anisotropic two-dimensional nearest-neighbor Ising model with competitive interactions in both uniform longitudinal field HH and transverse magnetic field ΩΩ. Using the effective-field theory (EFT) with correlation in cluster with N=1N=1 spin we calculate the thermodynamic properties as a function of temperature with values HH and ΩΩ fixed. The model consists of ferromagnetic interaction JxJx in the xx direction and antiferromagnetic interaction JyJy in the yy direction, and it is found that for H/Jy∈[0,2]H/Jy[0,2] the system exhibits a second-order phase transition. The thermodynamic properties are obtained for the particular case of λ=Jx/Jy=1λ=Jx/Jy=1 (isotropic square lattice).  相似文献   

12.
We have found that the initial permeability μμ of Co2ZCo2Z ferrite is improved by the substitution of Ti4+Ti4+ and Zn2+Zn2+ ions for Fe3+Fe3+ ions. The substituted sample of Ba3Co2TixZnxFe24-2xO41Ba3Co2TixZnxFe24-2xO41 with x=0.85x=0.85 has a maximum μμ of 24, which is twice as large as that of the non-substituted sample with x=0x=0. The particle size and shape are changed by the substitution. This is influential in the densification and the preferential orientation of a toroidal-shape sample, which results in the improvement of μμ.  相似文献   

13.
We have investigated the magnetotransport and magnetic properties on polycrystalline samples of Sr2−xLaxFeMoO6 (x=0x=0, 0.2, 0.4, 0.6, 0.8 and 1.0). The magnitude of intergrain tunneling magnetoresistance with low magnetic field of 0.88 T for x=0.2x=0.2 and 0.40.4 samples are as large as 5% and 7% at room temperature and 13% and 10% at 10 K, respectively. The increase of coercivity (HcHc), ratio of remanent magnetization with respect to saturation magnetization (Mr/MsMr/Ms), high saturation fields, and reduction of the saturation magnetization indicate that random disorder of spin orientation is mainly responsible for enhancement of the low-field magnetoresistance for samples with x?0.4x?0.4. Whereas rapid drop of HcHc, Mr/MsMr/Ms, MrMr, and saturation fields for samples with x>0.4x>0.4 signifies the growth of antiphase boundary, which gives rise to lower values of low-field MR.  相似文献   

14.
The ββ-expansion of the Helmholtz free energy (HFE) up to order β12β12 of the classical XYZ model with a single-ion anisotropy term and external magnetic field is calculated and compared to the numerical solution of Joyce's [Phys. Rev. Lett. 19 (1967) 581] for the XXZ   classical model, with neither single-ion anisotropy term nor external magnetic field. This comparison shows that the derived analytical expansion is valid for intermediate temperatures such as kT/Jx≈0.5kT/Jx0.5. The specific heat and magnetic susceptibility of the S=2S=2 antiferromagnetic chain can be approximated by their respective classical results, within an error of 2.5%2.5%, up to kT/J≈0.8kT/J0.8. For a vanishing external magnetic field the ferromagnetic and antiferromagnetic chains are shown to have the same classical HFE; their behaviour in a non-vanishing external magnetic field is also described.  相似文献   

15.
Si1−xMnx   (x?0.22x?0.22) thin films were grown by using a thermal evaporator, and their magnetic and electrical properties were investigated. The Si1−xMnx semiconductors are amorphous when Mn concentration is 9.0 at% and less. The electrical resistivities of amorphous Si1−xMnx   (x?0.09x?0.09) semiconductor thin films are in the range of 9.86–6.59×10−4 Ω cm at room temperature and decrease with increasing Mn concentration. The amorphous Si1−xMnx   (x?0.09x?0.09) semiconductor thin films are p-type and hole densities are 3.73×1018–1.33×1022 cm−3 at room temperature. Low temperature magnetization characteristics reveal that amorphous Si1−xMnx   (x?0.09x?0.09) semiconductor thin films are paramagnetic.  相似文献   

16.
Melted alloys of the FexMn0.65−xAl0.35 disordered system, 0.25?x?0.65, were experimentally studied by Mössbauer spectrometry, vibrating sample magnetometry and AC magnetic susceptibility. All the alloys exhibit the BCC structure with a nearly constant lattice parameter (2.92 Å). Mössbauer studies at room temperature (RT) show that in the 0.25 ?x?0.45 range the alloys are paramagnetic (P) while in the 0.50?x?0.65 range, they are ferromagnetic. At 77 K, Mössbauer studies show that the alloy with x=0.25x=0.25 presents weak magnetic character that is consistent with an antiferromagnetic (AF) behavior due to the high Mn content, while those with 0.30?x?0.40 are paramagnetic, and those in the 0.45?x  ?0.65 range are ferromagnetic (F) with a mean field increasing with the Fe content. Hysteresis cycles at RT prove the paramagnetic character of the alloys between x=0.25x=0.25 and 0.40 and the ferromagnetic character for x?0.45x?0.45. Complementary measurements using AC magnetic susceptibility permit a magnetic phase diagram to be proposed, with the P phase for high temperature and all the compositions, the AF phase for low Fe content and at low temperature, the F phase for high Fe content above RT and the spin glass phase for all the compositions and at temperatures lower than 46 K. In addition, the mean field renormalization group (MFRG) method, applied to a random competitive and site dilute Ising model with nearest-neighbor, gives rise to magnetic phase diagram, which fairly agrees with previous experimental one.  相似文献   

17.
Multiferroic ground states with a spatially modulated antiferromagnetic structure and electric polarization have been revealed in Eu1−xYxMnO3 (0.2?x?0.50.2?x?0.5) single crystals. While the slightly substituted (x?0.1x?0.1) compounds exhibited a transition from the incommensurate (IC) to the canted antiferromagnetic (CAF) state at TCA<TNTCA<TN, the transitions from IC to commensurate ferroelectric (C/FE) phase were observed at Tlock<TNTlock<TN for x>0.2x>0.2. Various phase transitions were observed in the magnetic fields up to 250 kOe along a, b, c axes by magnetization, magnetostriction and electric polarization measurements which show an existence of a spontaneous electric polarization below Tlock.  相似文献   

18.
We demonstrate the emergence of non-Abelian fusion rules for excitations of a two dimensional lattice model built out of Abelian degrees of freedom. It can be considered as an extension of the usual toric code model on a two dimensional lattice augmented with matter fields. It consists of the usual C(Zp)C(Zp) gauge degrees of freedom living on the links together with matter degrees of freedom living on the vertices. The matter part is described by a nn dimensional vector space which we call HnHn. The ZpZp gauge particles act on the vertex particles and thus HnHn can be thought of as a C(Zp)C(Zp) module. An exactly solvable model is built with operators acting in this Hilbert space. The vertex excitations for this model are studied and shown to obey non-Abelian fusion rules. We will show this for specific values of nn and pp, though we believe this feature holds for all n>pn>p. We will see that non-Abelian anyons of the quantum double of C(S3)C(S3) are obtained as part of the vertex excitations of the model with n=6n=6 and p=3p=3. Ising anyons are obtained in the model with n=4n=4 and p=2p=2. The n=3n=3 and p=2p=2 case is also worked out as this is the simplest model exhibiting non-Abelian fusion rules. Another common feature shared by these models is that the ground states have a higher symmetry than ZpZp. This makes them possible candidates for realizing quantum computation.  相似文献   

19.
The large-n expansion is applied to the calculation of thermal critical exponents describing the critical behavior of spatially anisotropic d-dimensional systems at m  -axial Lifshitz points. We derive the leading non-trivial 1/n1/n correction for the perpendicular correlation-length exponent νL2νL2 and hence several related thermal exponents to order O(1/n)O(1/n). The results are consistent with known large-n expansions for d  -dimensional critical points and isotropic Lifshitz points, as well as with the second-order epsilon expansion about the upper critical dimension d?=4+m/2d?=4+m/2 for generic m∈[0,d]m[0,d]. Analytical results are given for the special case d=4d=4, m=1m=1. For uniaxial Lifshitz points in three dimensions, 1/n1/n coefficients are calculated numerically. The estimates of critical exponents at d=3d=3, m=1m=1 and n=3n=3 are discussed.  相似文献   

20.
In this paper we study the critical behavior of a two-sublattice Ising model on an anisotropic square lattice in both uniform longitudinal (H  ) and transverse (ΩΩ) fields by using the effective-field theory. The model consists of ferromagnetic interaction Jx in the x direction and antiferromagnetic interaction Jy in the y direction in the presence of the H   and ΩΩ fields. We obtain the phase diagrams in the H–THT and Ω–TΩT planes changing values of the ΩΩ and H   parameters, respectively for fixed value at λ=Jx/Jy=1λ=Jx/Jy=1. At null temperature, the ground state phase diagram in the Ω–HΩH plane for several values of λλ parameter is analyzed. In the particular case of λ=1λ=1 we compare our results with mean-field theory (MFT) and was not observed reentrant behavior around of the critical field Hc/Jy=2.0Hc/Jy=2.0 for Ω=0Ω=0 by using EFT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号