首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Two ranges of solid solutions were prepared in the system Li4SiO4Li3VO4: Li4?xSi1?xVxO4, 0 < x ? 0.37 with the Li4SiO4 structure and Li3+yV1?ySiyO4, 0.18 ? y ? 0.53 with a γ structure. The conductivity of both solid solutions is much higher than that of the end members and passes through a maximum at ~40Li4SiO4 · 60Li3VO4 with values of ~1 × 10?5 ohm?1 cm?1 at 20°C, rising to ~4 × 10?2 ohm?1 cm?1 at 300°C. These conductivities are several times higher than in the corresponding Li4SiO4Li3(P,As)O4 systems, especially at room temperature. The solid solutions are easy to prepare, are stable in air, and maintain their conductivity with time. The mechanism of conduction is discussed in terms of the random-walk equation for conductivity and the significance of the term c(1 ? c) in the preexponential factor is assessed. Data for the three systems Li4SiO4Li3YO4 (Y = P, As. V) are compared.  相似文献   

2.
A modified low temperature solid state process has been proposed to systematically synthesize europium-doped yttrium phosphate-vanadates with general formula Y0.48Li1.5V1 ? x P x O4:Eu3+ (x = 0.2, 0.4, 0.6). All the Y0.48Li1.5V1 ? x P x O4:Eu3+ products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The excitation and emission spectra were measured at room temperature. Y0.48Li1.5V1 ? x P x O4:Eu3+ show the characteristic missions of Eu3+ (5 D 0?7 F 1, 2, 3, 4 transitions dominated by 5 D 0?7 F 2), intensities of the products were sensitive to the x value, and the x value had an obvious influence on the (5 D 0?7 F 2)/(5 D)0?7 F 1) intensity ratio of Eu3+. In addition, incorporation of Li+ ions in the phosphors reduce the amount of Y2O3, lower the cost of production, and cause a new phase Li3VO4.  相似文献   

3.
Preparation of lithium garnet Li7La3Zr2O12 (LLZ) in cubic phase by solid state method requires high temperature sintering around 1,200 °C for 36 h in Al2O3 crucible with intermittent grinding. Synthesis of LLZ in cubic phase at lower temperatures by wet chemical methods was reported earlier, however that decompose at high temperature around 850 °C. In this work we report the systematic studies on synthesis of garnet structured electrolytes by modified sol–gel method by the simultaneous substitution of Li+ and Y3+ for Zr4+ according to the formulae Li7+x La3Y x Zr2-x O12 (x = 0, 0.1, 0.2, 0.3 and 0.4). The present investigation revealed that the cubic garnet phase is obtained at much lower temperature for Li7La3Zr2O12 and the simultaneous increase of both Li+ and Y3+ in Li7+x La3Y x Zr2-x O12 requires slightly higher sintering temperatures for the formation of cubic garnet phase. SEM micrographs of the Li7+x La3Y x Zr2-x O12 (x = 0, 0.1, 0.2, 0.3 and 0.4) annealed at minimum sintering temperature required for the formation of cubic garnet phase revealed the increase in grain size and relatively dense structure with increase of x in Li7+x La3Y x Zr2-x O12.  相似文献   

4.
Optical absorption and EPR spectroscopic studies were carried on (30 ? x)Li2O–xK2O–10CdO–59B2O3–1Fe2O3 (x = 0–30) glass system to understand the effect of progressive doping of Li+ ion with K+ ion. Optical absorption results show typical spectra of Fe3+ ions and the various optical parameters such as, optical band gap, Urbach energy, oxide ion polarizability, optical basicity and interaction parameter were evaluated from the experimental data. The observed optical band gap and Urbach energy values show large deviation from the linearity where as the other parameters show small deviation from the linearity with the progressive substitution of Li+ ions with K+ ions. The observed EPR spectra are representative of Fe3+ ion in octahedral and axial fields in the glass network. The number of paramagnetic centers and paramagnetic susceptibility values were evaluated at different resonance lines for all the specimens and these parameters show non-additive nature with the progressive substitution of Li+ ions with K+ ions in the glass network. This is first ever observation of mixed alkali effect (MAE) in EPR and optical parameters of mixed alkali borate glasses.  相似文献   

5.
Nucleophilic substitution reactions in the alkyl halides, RX + Y? → RY + X?, proceeding in polar media are considered on the basis of the theory presented in Part A. It is shown that the solvent reorganization energy is the main part of the activation energy for this processes. According to calculations performed, the values of the solvent reorganization energy equal ~2.5–3 eV for H2O and ~ 1.8–2.3 eV for acetone. From experimental data on the kinetic isotope effect, an estimate for the splitting of nonadiabatic terms and for the slope of the potential curve v′ of the intermolecular interaction between halide ion and methyl halide near transition configuration is made. Further, the parameter v′ is used for calculating the activation entropy of substitution reactions in the methyl halides. Theoretical activation energies and activation entropies agree with experimental values. In the framework of theory presented an interpretation of change of Ea and the preexponential factor with the type of alkyl halide is given.  相似文献   

6.
NMR (19F, 207Pb) and impedance spectroscopy methods are used to investigate the ionic mobility and conductivity in solid solutions of (1 ? x)PbF2 ? xMF3 (where M is Y3+ and La3+) at 0.05 ≤ x ≤ 0.1. The factors determining the form of ionic movement in these systems and its energy in a range of temperatures from 170 K to 500 K are considered and analyzed. It is found that the solid solutions studied can be related to the class of superionic conductors: their σ value is 2·10?3 ? 5·10?3 S/cm at temperatures above 470 K, and the activation energy does not exceed 0.52–0.58 eV.  相似文献   

7.
The behavior of the variable-composition spinel Li1 + x Mn2 ? x O4 is examined in repeated cycles consisting of lithiation in 0.2 M LiOH and delithiation in 0.3 M HNO3. For 0 < x < 0.33, delithiation is accompanied by the redox reaction 2Mn3+ → Mn4+ + Mn2+ and Li+ ? H+ ion exchange. The spinel undergoes partial conversion into λ-□MnO2. Vacancies (□) build up at the 8a sites of the spinel structure. Mn2+ ions pass into the solution, and, accordingly, the spinel dissolves. Lithiation is accompanied by the redox reaction 4Mn4+ → 3Mn3+ + Mn7+ and ion exchange, and the proportion of vacancies □ at the 8a sites of the spinel structure decreases. The spinel undergoes partial dissolution because of Mn2+ and MnO ? 4 ions passing into the solution. The Li+ selectivity of the spinel is the property of the crystallite core. The crystallite surface is capable of sorbing Na+ ions.  相似文献   

8.
Lithium‐rich layer‐structured oxides xLi2MnO3? (1?x)LiMO2 (0<x<1, M=Mn, Ni, Co, etc.) are interesting and potential cathode materials for high energy‐density lithium ion batteries. However, the characteristic charge compensation contributed by O2? in Li2MnO3 leads to the evolution of oxygen during the initial Li+ ion extraction at high voltage and voltage fading in subsequent cycling, resulting in a safety hazard and poor cycling performance of the battery. Molybdenum substitution was performed in this work to provide another electron donor and to enhance the electrochemical activity of Li2MnO3‐based cathode materials. X‐ray diffraction and adsorption studies indicated that Mo5+ substitution expands the unit cell in the crystal lattice and weakens the Li?O and Mn?O bonds, as well as enhancing the activity of Li2MnO3 by lowering its delithiation potential and suppressing the release of oxygen. In addition, the chemical environment of O2? ions in molybdenum‐substituted Li2MnO3 is more reversible than in the unsubstituted sample during cycling. Therefore molybdenum substitution is expected to improve the performances of the Li2MnO3‐based lithium‐rich cathode materials.  相似文献   

9.
Na-montmorillonites were exchanged with Li+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+, while Ca-montmorillonites were treated with alkaline and alkaline earth ions except for Ra2+ and Ca2+. Montmorillonites with interlayer cations Li+ or Na+ have remarkable swelling capacity and keep excellent stability. It is shown that metal ions represent different exchange ability as follows: Cs+?>?Rb+?>?K+?>?Na+?>?Li+ and Ba2+?>?Sr2+?>?Ca2+?>?Mg2+. The cation exchange capacity with single ion exchange capacity illustrates that Mg2+ and Ca2+ do not only take part in cation exchange but also produce physical adsorption on the montmorillonite. Although interlayer spacing d 001 depends on both radius and hydration radius of interlayer cations, the latter one plays a decisive role in changing d 001 value. Three stages of temperature intervals of dehydration are observed from the TG/DSC curves: the release of surface water adsorbed (36?C84?°C), the dehydration of interlayer water and the chemical-adsorption water (47?C189?°C) and dehydration of bound water of interlayer metal cation (108?C268?°C). Data show that the quantity and hydration energy of ions adsorbed on montmorillonite influence the water content in montmorillonite. Mg2+-modified Na-montmorillonite which absorbs the most quantity of ions with the highest hydration energy has the maximum water content up to 8.84%.  相似文献   

10.
EPR and optical absorption spectra of Cu2+ ion were investigated in natural elbaites from Brazil and Zambia and in synthetic olenite single crystal. In elbaite from Zambia, the content of Cu2+ ions was found to be about 0.006 pfu, whereas in Brazilian elbaite the amount of this ion can approach up to 0.2 pfu. The rose color of elbaite from Zambia is mainly due to optical absorption at 515 nm related to Mn3+ ions. The blue color of Brazilian elbaite is related to Cu2+ absorption bands at 695 nm and 920 nm. Spin Hamiltonian parameters of Cu2+ calculated from the angular dependence of the EPR spectra are: g x = 2.054, g y = 2.092, g z = 2.374; A x = 27.8·10?4 cm?1, A y = 59.3·10?4 cm? 1, A z = 133.2·10?4 cm?1. We propose that Cu2+ ions enter into Y octahedra with common edges; the symmetry of these Y octahedra is lowered because of local disorder induced by occupancy of the Y site by cations of very different size and charge, such as Li+, Al3+, and Cu2+.  相似文献   

11.
The search for ion‐conductive solid electrolytes for Li+ batteries is an important scientific and technological challenge with economic and sustainable energy implications. In this study, nanocrystals (NCs) of the ion conductor copper selenide (Cu2?ySe) were doped with Li by the process of cation exchange. Li2xCu2?2xSe alloy NCs were formed at intermediate stages of the reaction, which was followed by phase segregation into Li2Se and Cu2Se domains. Li‐doped Cu2?ySe NCs and Li2Se NCs exhibit a possible SI phase at moderately elevated temperatures and warrant further ion‐conductance tests. These findings may guide the design of nanostructured super‐ionic electrolytes for Li+ transport.  相似文献   

12.
Perfluorosulfonic acid/Polysulfone(PFSA/PSf) hollow fiber composite membranes have been prepared by dip-coating method using PSf ultrafiltration (UF) membrane as substrate with recovered PFSA. The composite membranes were applied to the pervaporation separation of 95% ethanol (EtOH)/H2O mixture. SEM images show that the thickness of the PFSA skin layer of the composite membranes is about 2 μm, much thinner than those of other PFSA composite membranes revealed in the literatures. Effects of annealing temperature, coating solution concentration and counter-ions of PFSA on the pervaporation performances of the composite membranes were investigated. The total flux decreases and separation factor increases with the increase of annealing temperature. The highest permeation flux of 3230 g m?2 h?1 and a separation factor of 5.4 is obtained for the composite membrane annealed at 80°C. The lowest permeation flux of 396 g m?2 h?1 and a separation factor of 27.7 is obtained for the composite membrane annealed at 160°C. The permeation performances of the PFSA/PSf composite membrane are evidently influenced by the counter-ions of PFSA. The flux sequence of the PFSA/PSf composite membranes with different counter-ions is H+>Li+>Ca2+>Mg2+>Na+>K+>Ba2+>Fe3+>Al3+, and the separation factor sequence is H+<Li+<Al3+<Na+<Mg2+<Ca2+<K+<Ba2+<Fe3+. The apparent activation energy ΔE app values of the composite membranes with different counter-ions were calculated by Arrhenius law. The sequence of ΔE app values for the membranes with monovalent counter-ions is Li+>Na+>K+. There are very little variations of ΔE app values between the composite membranes with three divalent counter-ions (Mg2+, Ca2+ and Ba2+), and the ΔE app values of the composite membranes with two trivalent counter-ions (Fe3+ and Al3+) are relatively high.  相似文献   

13.
The atomistic mechanisms of Li+ ion mobility/conductivity in Li7?xPS6?xIx argyrodites are explored from both experimental and theoretical viewpoints. Ionic conductivity in the title compound is associated with a solid–solid phase transition, which was characterised by low‐temperature differential scanning calorimetry, 7Li and 127I NMR investigations, impedance measurements and molecular dynamics simulations. The NMR signals of both isotopes are dominated by anisotropic interactions at low temperatures. A significant narrowing of the NMR signal indicates a motional averaging of the anisotropic interactions above 177±2 K. The activation energy to ionic conductivity was assessed from both impedance spectroscopy and molecular dynamics simulations. The latter revealed that a series of interstitial sites become accessible to the Li+ ions, whilst the remaining ions stay at their respective sites in the argyrodite lattice. The interstitial positions each correspond to the centres of tetrahedra of S/I atoms, and differ only in terms of their common corners, edges, or faces with adjacent PS4 tetrahedra. From connectivity analyses and free‐energy rankings, a specific tetrahedron is identified as the key restriction to ionic conductivity, and is clearly differentiated from local mobility, which follows a different mechanism with much lower activation energy. Interpolation of the lattice parameters as derived from X‐ray diffraction experiments indicates a homogeneity range for Li7?xPS6?xIx with 0.97≤x≤1.00. Within this range, molecular dynamics simulations predict Li+ conductivity at ambient conditions to vary considerably.  相似文献   

14.
The spinel LiMn2O4 cathode material has been considered as one of the most potential cathode active materials for rechargeable lithium ion batteries. The sodium-doped LiMn2O4 is synthesized by solid-state reaction. The X-ray diffraction analysis reveals that the Li1?x Na x Mn2O4 (0?≤?x?≤?0.01) exhibits a single phase with cubic spinel structure. The particles of the doped samples exhibit better crystallinity and uniform distribution. The diffusion coefficient of the Li0.99Na0.01Mn2O4 sample is 2.45?×?10?10 cm?2 s?1 and 3.74?×?10?10 cm?2 s?1, which is much higher than that of the undoped spinel LiMn2O4 sample, indicating the Na+-ion doping is favorable to lithium ion migration in the spinel structure. The galvanostatic charge–discharge results show that the Na+-ion doping could improve cycling performance and rate capability, which is mainly due to the higher ion diffusion coefficient and more stable spinel structure.  相似文献   

15.
The kinetics of the redox reaction between mandelic acid (MA) and ceric sulfate have been studied in aqueous sulfuric acid solutions and in H2SO4? MClO4 (M+ = H+, Li+, Na+) and H2SO4? MHSO4 (M+ = Li+, Na+, K+) mixtures under various experimental conditions of total electrolyte concentration (that is, ionic strength) and temperature. The oxidation reaction has been found to occur via two paths according to the following rate law: rate = k[MA] [Ce(IV)], where k = k1 + k2/(1 + a)2[HSO4?]2 = k1 + k2/(1 + 1/a)2[SO42?]2, a being a constant. The cations considered exhibit negative specific effects upon the overall oxidation rate following the order H+ ? Li+ < Na+ < K+. The observed negative cation effects on the rate constant k1 are in the order Na+ < Li+ < H+, whereas the order is in reverse for k2, namely, H+ ? Li+ < Na+. Lithium and hydrogen ions exhibit similar medium effects only when relatively small amounts of electrolytes are replaced. The type of the cation used does not affect significantly the activation parameters.  相似文献   

16.
A new ditopic ion‐pair receptor 1 was designed, synthesized, and characterized. Detailed binding studies served to confirm that this receptor binds fluoride and chloride ions (studied as their tetraalkylammonium salts) and forms stable 1:1 complexes in CDCl3. Treatment of the halide‐ion complexes of 1 with Group I and II metal ions (Li+, Na+, K+, Cs+, Mg2+, and Ca2+; studied as their perchlorate salts in CD3CN) revealed unique interactions that were found to depend on both the choice of the added cation and the precomplexed anion. In the case of the fluoride complex [ 1? F]? (preformed as the tetrabutylammonium (TBA+) complex), little evidence of interaction with the K+ ion was seen. In contrast, when this same complex (i.e., [ 1? F]? as the TBA+ salt) was treated with the Li+ or Na+ ions, complete decomplexation of the receptor‐bound fluoride ion was observed. In sharp contrast to what was seen with Li+, Na+, and K+, treating complex [ 1? F]? with the Cs+ ion gave rise to a stable, receptor‐bound ion‐pair complex [Cs ?1? F] that contains the Cs+ ion complexed within the cup‐like cavity of the calix[4]pyrrole, which in turn was stabilized in its cone conformation. Different complexation behavior was observed in the case of the chloride complex [ 1? Cl]?. In this case, no appreciable interaction was observed with Na+ or K+. In addition, treating [ 1? Cl]? with Li+ produces a tightly hydrated dimeric ion‐pair complex [ 1? LiCl(H2O)]2 in which two Li+ ions are bound to the crown moiety of the two receptors. In analogy to what was seen in the case of [ 1? F]?, exposure of [ 1? Cl]? to the Cs+ ion gives rise to an ion‐pair complex [Cs ?1? Cl] in which the cation is bound within the cup of the calix[4]pyrrole. Different complexation modes were also observed when the binding of the fluoride ion was studied by using the tetramethylammonium and tetraethylammonium salts.  相似文献   

17.
A 7Li NMR investigation of nonstoechiometric ferroelectric phases derived from LiTaO3 has been performed on three solid solutions of formulation Li1+xTa1?x5O3, Li1+xTa1?xTixO3, and Li1?xTa1?3x Ti4xO3. For the first one, based on the substitution of 1 Ta5+ by 5 Li+, the existence of Li+ in both octahedral and tetrahedral sites is confirmed. It is not excluded that the 5 Li+ form a small cluster within seven sites (one octahedral position and six tetrahedral ones) in the vicinity of the substituted Ta5+. For the second solid solution a large variation of the 7Li quadrupolar spectrum with composition has been detected, such behavior is related to the great decrease in Tc near the x = 0.10 composition.  相似文献   

18.
Developing high‐performance all‐solid‐state batteries is contingent on finding solid electrolyte materials with high ionic conductivity and ductility. Here we report new halide‐rich solid solution phases in the argyrodite Li6PS5Cl family, Li6?xPS5?xCl1+x, and combine electrochemical impedance spectroscopy, neutron diffraction, and 7Li NMR MAS and PFG spectroscopy to show that increasing the Cl?/S2? ratio has a systematic, and remarkable impact on Li‐ion diffusivity in the lattice. The phase at the limit of the solid solution regime, Li5.5PS4.5Cl1.5, exhibits a cold‐pressed conductivity of 9.4±0.1 mS cm?1 at 298 K (and 12.0±0.2 mS cm?1 on sintering)—almost four‐fold greater than Li6PS5Cl under identical processing conditions and comparable to metastable superionic Li7P3S11. Weakened interactions between the mobile Li‐ions and surrounding framework anions incurred by substitution of divalent S2? for monovalent Cl? play a major role in enhancing Li+‐ion diffusivity, along with increased site disorder and a higher lithium vacancy population.  相似文献   

19.
An investigation is conducted on enhancing lithium-ion intercalation and conduction performance of transparent organo tantalum oxide (TaO y C z ) films, by addition of lithium via a fast co-synthesis onto 40 Ω/□ flexible polyethylene terephthalate/indium tin oxide substrates at the short exposed durations of 33–34 s, using an atmospheric pressure plasma jet (APPJ) at various mixed concentrations of tantalum ethoxide [Ta(OC2H5)5] and lithium tert-butoxide [(CH3)3COLi] precursors. Transparent organo-lithiated tantalum oxide (Li x TaO y C z ) films expose noteworthy Li+ ion intercalation and conduction performance for 200 cycles of reversible Li+ ion intercalation and deintercalation in a 1 M LiClO4-propylene carbonate electrolyte, by switching measurements with a potential sweep from ?1.25 to 1.25 V at a scan rate of 50 mV/s and a potential step at ?1.25 and 1.25 V, even after being bent 360° around a 2.5-cm diameter rod for 1000 cycles. The Li+ ionic diffusion coefficient and conductivity of 6.2?×?10?10 cm2/s and 6.0?×?10?11 S/cm for TaO y C z films are greatly progressed of up to 9.6?×?10?10 cm2/s and 7.8?×?10?9 S/cm for Li x TaO y C z films by co-synthesis with an APPJ.  相似文献   

20.
Substitution of Li+ into Co3O4 and ZnCo2O4 gives rise to the solid solution series LixM1?xCo2O4 (M = Co2+ or Zn2+) having the spinel structure upto x = 0.4. X-Ray diffraction intensities show that the spinel solid solutions are likely to have the following cation distributions: (Co2+)t[Li+xCo3+2?3xCo4+2x]0O4 and (Zn2+1?xCo2+x)t[Li+xCo3+2?3xCo4+2x]0O4. Electrical resistivity and Seebeck coefficient data indicate that the electron transport in these systems occurs by a small-polaron hopping mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号