首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A pi-extended, redox-active bridging ligand 4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[2,3-a:3',2'-c]phenazine (L) was prepared via direct Schiff-base condensation of the corresponding diamine-tetrathiafulvalene (TTF) precursor with 4,7-phenanthroline-5,6-dione. Reactions of L with [Ru(bpy)(2)Cl(2)] afforded its stable mono- and dinuclear ruthenium(II) complexes 1 and 2. They have been fully characterized, and their photophysical and electrochemical properties are reported together with those of [Ru(bpy)(2)(ppb)](2+) and [Ru(bpy)(2)(mu-ppb)Ru(bpy)(2)](4+) (ppb = dipyrido[2,3-a:3',2'-c]phenazine) for comparison. In all cases, the first excited state corresponds to an intramolecular TTF --> ppb charge-transfer state. Both ruthenium(II) complexes show two strong and well-separated metal-to-ligand charge-transfer (MLCT) absorption bands, whereas the (3)MLCT luminescence is strongly quenched via electron transfer from the TTF subunit. Clearly, the transient absorption spectra illustrate the role of the TTF fragment as an electron donor, which induces a triplet intraligand charge-transfer state ((3)ILCT) with lifetimes of approximately 200 and 50 ns for mono- and dinuclear ruthenium(II) complexes, respectively.  相似文献   

2.
Octahedral tris-chelate complexes [M(II)(bpy)(3)](2+) (M = Ru or Os, bpy = 2,2'-bipyridyl), covalently attached to the 3'- and 5'-phosphates of two oligonucleotides, are juxtaposed when hybridized contiguously to a fully complementary DNA target. Visible metal-to-ligand charge-transfer (MLCT) excitation of the [Ru(II)(bpy)(3)](2+) unit leads to resonance energy transfer to the MLCT state of the [Os(II)(bpy)(3)](2+) moiety, with the energy transfer efficiency depending on the degree of hybridization. The extent of attenuation of the intense red luminescence from the Ru(II) chromophore hence allows highly sensitive structural probing of the assembly and constitutes a novel approach to DNA sensing which is capable of detecting mutations.  相似文献   

3.
A series of ruthenium(II) complexes possessing ligands with an extended pi system were synthesized and characterized. The complexes are derived from [Ru(bpy)3](2+) (1, bpy = 2,2'-bipyridine) and include [Ru(bpy)2(tpphz)](2+) (2, tpphz = tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazine), [Ru(bpy)2(dppx)](2+) (3, dppx = 7,8-dimethyldipyrido[3,2-a:2',3'-c]phenazine), [Ru(bpy)2(dppm2)](2+) (4, dppm2 = 6-methyldipyrido[3,2-a:2',3'-c]phenazine), and [Ru(bpy)2(dppp2)](2+) (5, dppp2 = pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline). The excited-state properties of these complexes, including their DNA "light-switch" behavior, were compared to those of [Ru(bpy)2(dppz)](2+) (6, dppz = dipyrido[3,2-a:2',3'-c]phenazine). Whereas 2, 3, and 4 can be classified as DNA light-switch complexes, 5 exhibits negligible luminescence enhancement in the presence of DNA. Because relative viscosity experiments show that 2-6 bind to DNA by intercalation, their electronic absorption and emission spectra, electrochemistry, and temperature dependence of the luminescence were used to explain the observed differences. The small energy gap between the lowest-lying dark excited state and the bright state in 2-4 and 6 is related to the ability of these complexes to exhibit DNA light-switch behavior, whereas the large energy gap in 5 precludes the emission enhancement in the presence of DNA. The effect of the energy gap among low-lying states on the photophysical properties of 1-6 is discussed. In addition, DFT and TD-DFT calculations support the conclusions from the experiments.  相似文献   

4.
A series of mono-, di-, and tetranuclear homo/heterometallic complexes of Ru(II) and Os(II) based on the bridging ligand dppz(11-11')dppz (where dppz = dipyrido[3,2-a:2',3'-c]phenazine) (BL) have been synthesized and characterized. This bridging ligand is a long rigid rod with only one rotational degree of freedom and provides complete conjugation between the chromophores. The complexes synthesized are of general formula [(bpy)(2)Ru-BL](2+), [(phen)(2)/(bpy)(2)M-BL-M(bpy)(2)/(phen)(2)](4+) (M = Ru(II) and Os(II)), [(bpy)(2)Ru-BL-Os(bpy)(2)](4+), and [((bpy)(2)Ru-BL)(3)M](8+). Detailed (1)H NMR studies of these complexes revealed that each chiral center does not influence its neighbor because of the long distance between the metal centers and the superimposed resonances of the diastereoisomers, which allowed the unambiguous assignment of the signals, particularly for homonuclear complexes. Concentration-dependent (1)H NMR studies show molecular aggregation of the mono- and dinuclear complexes in solution by pi-pi stacking. Electrospray mass spectrometry data are consistent with dimerization of mono- and dinuclear complexes in solution. Electrochemical studies show oxidations of Ru(II) and Os(II) in the potential ranges +1.38 to +1.40 and +0.92 to +1.01 V, respectively. The bridging ligand exhibits two one-electron reductions, and it appears that the added electrons are localized on the phenazene moieties of the spacer. All of these complexes show strong metal-to-ligand charge-transfer (MLCT) absorption and (3)MLCT luminescence at room temperature. Quantum yields have been calculated, and the emission lifetimes of all complexes have been measured by laser flash photolysis experiments. The luminescence intensity and lifetime data suggest that the emission due to the Ru center of the heteronuclear complexes is strongly quenched (>90%) compared to that of the corresponding model complexes. This quenching is attributed to intramolecular energy transfer from the Ru(II) center to the Os(II) center (k = (3-5) x 10(7) s(-1)) across the bridging ligand.  相似文献   

5.
We report temperature-dependent excited-state lifetime measurements on [Ru(bpy)(2)dppz](2+) in both protic and aprotic solvents. These experiments yield a unifying picture of the excited-state photophysics that accounts for observations in both types of solvent. Our measurements support the notion of bpy-like and phz-like states associated with the dppz ligand and show that the ligand orbital associated with the bright state is similar in size to the corresponding orbital in the (3)MLCT state of [Ru(bpy)(3)](2+). In contrast to the current thinking, the experiments presented here indicate that the light-switch effect is not driven by a state reversal. Rather, they suggest that the dark state is always lowest in energy, even in aprotic solvents, and that the light-switch behavior is the result of a competition between energetic factors that favor the dark state and entropic factors that favor the bright (bpy) state.  相似文献   

6.
We report the preparation of complexes in which ruthenium(II) bis(bipyridyl) groups are coordinated to oligothiophenes via a diphenylphosphine linker and a thienyl sulfur (P,S bonding) to give [Ru(bpy)(2)PT(3)-P,S](PF(6))(2) (bpy = 2,2'-bipyridyl, PT(3) = 3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMeT(3)-P,S](PF(6))(2) (PMeT(3) = 3'-(diphenylphosphino)-5-methyl-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMe(2)T(3)-P,S](PF(6))(2) (PMe(2)T(3) = 5,5' '-dimethyl-3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), and [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2) (PDo(2)T(5) = 3,3' ' '-didodecyl-3' '-diphenylphosphino-2,2':5',2' ':5' ',2' ':5' ',2' ' '-pentathiophene). These complexes react with base, resulting in the complexes [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and [Ru(bpy)(2)PDo(2)T(5)-P,C]PF(6), where the thienyl carbon is bonded to ruthenium (P,C bonding). The P,C complexes revert back to the P,S bonding mode by reaction with acid; therefore, metal-thienyl bonding is reversibly switchable. The effect of interaction of the metal groups in the different bonding modes with the thienyl backbone is reflected by changes in alignment of the thienyl rings in the solid-state structures of the complexes, the redox potentials, and the pi --> pi transitions in solution. Methyl substituents attached to the terthiophene groups allow observation of the effect of these substituents on the conformational and electronic properties and aid in assignments of the electrochemical data. The PT(n)() ligands bound in P,S and P,C bonding modes also alter the electrochemical and spectroscopic properties of the ruthenium bis(bipyridyl) group. Both bonding modes result in quenching of the oligothiophene luminescence. Weak, short-lived Ru --> bipyridyl MLCT-based luminescence is observed for [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2), [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), and [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and no emission is observed for the alternate bonding mode of each complex.  相似文献   

7.
The salts [Ru(bpy)3](PF6)2, cis-[Ru(bpy)2(py)2](PF6)2, trans-[Ru(bpy)2(4-Etpy)2](PF6)2, [Ru(tpy)2](PF6)2, and [Re(bpy)(CO)3(4-Etpy)](PF6) (bpy=2,2'-bipyridine, py=pyridine, 4-Etpy=4-ethylpyridine, and tpy=2,2':6',2-terpyridine) have been incorporated into poly(methyl methacrylate) (PMMA) films and their photophysical properties examined by both steady-state and time-resolved absorption and emission measurements. Excited-state lifetimes for the metal salts incorporated in PMMA are longer and emission energies enhanced due to a rigid medium effect when compared to fluid CH3CN solution. In PMMA part of the fluid medium reorganization energy, lambdaoo, contributes to the energy gap with lambdaoo approximately 700 cm-1 for [Ru(bpy)3](PF6)2 from emission measurements. Enhanced lifetimes can be explained by the energy gap law and the influence of the excited-to-ground state energy gap, Eo, on nonradiative decay. From the results of emission spectral fitting on [Ru(bpy)3](PF6)2* in PMMA, Eo is temperature dependent above 200 K with partial differentialEo/ partial differentialT=2.8 cm-1/deg. cis-[Ru(bpy)2(py)2](PF6)2 and trans-[Ru(bpy)2(4-Etpy)2](PF6)2 are nonemissive in CH3CN and undergo photochemical ligand loss. Both emit in PMMA and are stable toward ligand loss even for extended photolysis periods. The lifetime of cis-[Ru(bpy)2(py)2](PF6)2* in PMMA is temperature dependent, consistent with a contribution to excited-state decay from thermal population and decay through a low-lying dd state or states. At temperatures above 190 K, coinciding with the onset of the temperature dependence of Eo for [Ru(bpy)3](PF6)2*, lifetimes become significantly nonexponential. The nonexponential behavior is attributed to dynamic coupling between MLCT and dd states, with the lifetime of the latter greatly enhanced in PMMA with tau approximately 3 ns. On the basis of these data and data in 4:1 (v/v) EtOH/MeOH, the energy gap between the MLCT and dd states is decreased by approximately 700 cm-1 in PMMA with the dd state at higher energy by DeltaH0 approximately 1000 cm-1. The "rigid medium stabilization effect" for cis-[Ru(bpy)2(py)2](PF6)2* in PMMA is attributed to inhibition of metal-ligand bond breaking and a photochemical cage effect.  相似文献   

8.
This paper presents the synthesis, MO calculations, and photochemical and photophysical properties of cis-[Ru(bpy)2(3Amdpy2oxaNBE)](PF6)2 (2), where bpy is 2,2'-bipyridine and 3Amdpy2oxaNBE is the novel 5,6-bis(3-amidopyridine)-7-oxanorbornene chelate-ligand (1). Complex 2 is considered in relation to the cis-[Ru(bpy)2(3Amnpy)2](PF6)2 (3) analogous complex, where 3Amnpy is 3-aminopyridine. Complexes 2 and 3 exhibit absorptions near 350 nm and in the 420-500 nm region attributable to a contribution from MLCT transitions (dpi-->bpy and dpi-->L; L=3Amdpy2oxaNBE or 3Amnpy). Whereas complex 3 is photochemically reactive, complex 2 shows luminescence either at 77 K or at room temperature in fluid solution. The emission of 2 assignable as an MLCT (Ru-->bpy) emission is characterized by a long lifetime at room temperature (650 ns in CH3CN and 509 ns in H2O). It is independent of lambdairr, but it is temperature dependent; i.e., it increases as the temperature is lowered. Considering the chelate ring of 1 contributes to the stability of the complex 2 under continuous light irradiation, the difference in the primary photoprocesses of 3 (loss of 3Amnpy) and 2 (luminescence) may be caused by a lowering of the lowest excited state from 3 to 2. The surface crossing to the lowest MC state value of 987 cm-1 (similar to that of [Ru(bpy)3]2+) will be prevented in the case of complex 2, and as a result, efficient 3Amdpy moiety loss cannot occur. The electronic depopulation of the {Ru(bpy)2} unit and population of a bpy* orbital upon excitation are evident by comparing the photophysical properties with those of a [Ru(bpy)3]2+ related complex. Moreover, a reduction of a bpy ligand in the MLCT excited state is indicated by time-resolved spectra that show features typical of bpy*-. The photocatalytic property of 2 is spectroscopically demonstrated by oxidative quenching using either methylviologen2+ or [RuCl(NH3)5]+2 electron-acceptor ions.  相似文献   

9.
Emission and absorbance spectra, along with low-temperature excited-state lifetimes, were obtained for the hemilabile complexes, [Ru(bpy)2L](PF6)2 [L = (2-methoxyphenyl)diphenylphosphine (RuPOMe) (1) and (2-ethoxyphenyl)diphenylphosphine (RuPOEt) (2)] in solid 4:1 ethanol/methanol solution. Spectral data were evaluated with ground-state reduction potentials using Lever parameters. Lifetime data for these complexes were collected from 77 to 160 K, and the rate constant for the combined radiative and nonradiative decay process, k, the thermally activated process prefactor, k'(0), the rate constant for the MLCT --> d-d transition, k', and the activation energy, DeltaE', were calculated from a plot of ln(1/tau) versus 1/T for both (1) and (2). The low-temperature luminescence lifetimes of (1) were observed to decrease with increases in water concentration. The photophysical and kinetic data of (1) and (2) are compared to literature data for [Ru(bpy)3](PF6)2. The emission maxima of (1) and (2) are blue-shifted relative to [Ru(bpy)3](PF6)2 due to the presence of the strong-field phosphine ligand, which enhances pi back-bonding to the bipyridyl ligands. The thermal activation energy, DeltaE', is significantly larger for [Ru(bpy)3](PF6)2 than for (1) and (2) resulting in a faster MLCT --> d-d transition for (1) and (2). These results are discussed in the context of radiationless decay through thermally activated ligand-field states on the metal complex.  相似文献   

10.
The isocyanide ligand forms complexes with ruthenium(II) bis-bipyridine of the type [Ru(bpy)(2)(CNx)Cl](CF(3)SO(3)) (1), [Ru(bpy)(2)(CNx)(py)](PF(6))(2) (2), and [Ru(bpy)(2)(CNx)(2)](PF(6))(2) (3) (bpy = 2,2'-bipyridine, py = pyridine, and CNx = 2,6-dimethylphenylisocyanide). The redox potentials shift positively as the number of CNx ligands increases. The metal-to-ligand charge-transfer (MLCT) bands of the complexes are located at higher energy than 450 nm and blue shift in proportion to the number of CNx ligands. The complexes are not emissive at room temperature but exhibit intense structured emission bands at 77 K with emission lifetimes as high as 25 micros. Geometry optimization of the complexes in the singlet ground and lowest-lying triplet states performed using density functional theory (DFT) provides information about the orbital heritage and correlates with X-ray and electrochemical results. The lowest-lying triplet-state energies correlate well with the 77 K emission energies for the three complexes. Singlet excited states calculated in ethanol using time-dependent density functional theory (TDDFT) and the conductor-like polarizable continuum model (CPCM) provide information that correlates favorably with the experimental absorption spectra in ethanol.  相似文献   

11.
The quenching of the luminescence of [Ru(phen)(2)dppz](2+) by structural homologue [Ru(phendione)(2)dppz](2+), when both complexes are bound to DNA, has been studied for all four combinations of Delta and Lambda enantiomers. Flow linear dichroism spectroscopy (LD) indicates similar binding geometries for all the four compounds, with the dppz ligand fully intercalated between the DNA base pairs. A difference in the LD spectrum observed for the lowest-energy MLCT transition suggests that a transition, potentially related to the final localization of the excited electron to the dppz ligand in [Ru(phen)(2)dppz](2+), is overlaid by an orthogonally polarized transition in [Ru(phendione)(2)dppz](2+). This would be consistent with a low-lying LUMO of the phendione moiety of [Ru(phendione)(2)dppz](2+) that can accept the excited electron from [Ru(phen)(2)dppz](2+), thereby quenching the emission of the latter. The lifetime of excited Delta-[Ru(phen)(2)dppz](2+) is decreased moderately, from 664 to 427 ns, when bound simultaneously with the phendione complex to DNA. The 108 ns lifetime of opposite enantiomer, Lambda-[Ru(phen)(2)dppz](2+), is only shortened to 94 ns. These results are consistent with an average rate constant for electron transfer of approximately 1.10(6) s(-1) between the phenanthroline- and phendione-ruthenium complexes. At binding ratios close to saturation of DNA, the total emission of the two enantiomers is lowered equally much, but for the Lambda enantiomer, this is not paralleled by a decrease in luminescence lifetime. A binding isotherm simulation based on a generalized McGhee-von Hippel approach shows that the Delta enantiomer binds approximately 3 times stronger to DNA both for [Ru(phendione)(2)dppz](2+) and [Ru(phen)(2)dppz](2+). This explains the similar decrease in total emission, without the parallel decrease in lifetime for the Lambda enantiomer. The simulation also does not indicate any significant binding cooperativity, in contrast to the case when Delta-[Rh(phi)(2)bipy](3+) is used as quencher. The very slow electron transfer from [Ru(phen)(2)dppz](2+) to [Ru(phendione)(2)dppz](2+), compared to the case when [Rh(phi)(2)phen](3+) is the acceptor, can be explained by a much smaller driving free-energy difference.  相似文献   

12.
The tetradentate ligands, 2,2'-(1H-pyrazole-3,5-diyl)bis(4- methylpyridine) (4,4'-Me2dppzH), 2,2'-(1H-pyrazole-3,5-diyl)bis(6-methylpyridine) (6,6'-Me2dppzH), 3,5-di(pyrid-2-yl)pyrazole (dppzH), and dipyridyloxadiazole (dpo) react with either Ru(trpy)Cl3 or trans-Ru(trpy)Cl2(NCCH3), where trpy is 2,2',2'-terpyridine, to form a variety of Ru(II) complexes. Among these are the symmetrical chloro-bridged Ru(II) dimer and the "in" and "out" geometric isomers of the monometallic Ru(II) containing species where "in" and "out" refer to the orientation of the Ru-Cl vector relative to the centroid of the ligand backbone. Thirteen complexes were prepared and painstakingly purified by careful recrystallization and/or exhaustive column chromatography. These complexes were characterized by 1H and 13C NMR, electronic absorption, and infrared spectroscopy. Additionally, [Ru2(tryp)2(6,6'-Me2dppz)mu-Cl](BF4)2 (3b(BF4)2), [Ru2(trpy)2(4,4'-Me2dppz)mu-Cl](PF6)2.0.5MeOH (3c), [Ru2(trpy)2(6,6'-Me2dppz)(CH2C(O)CH3)](PF6)2.0.5(CH3)2CO (9b), "in"-[Ru(trpy)(4,4'-Me2dppz)Cl](PF6).(CH3)2CO (1c), and "out"-[Ru(trpy)(dpo)Cl](PF6).(CH3)2CO (2d) were characterized by X-ray crystallography. Several ligand substitution reactions were attempted. For example, [Ru2(trpy)2(6,6'-Me2dppz)mu-Cl](BF4)2 (3b) was reacted with hydroxide ion to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-OH](PF6)2 (6b). Complex 6b reacts with benzyl bromide to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-Br](PF6)2 (7b) or with (CH3)3Sil to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-I](PF6)2 (8b). of 6b with acetone forms the methyl enolate complex [Ru2(trpy)2(6,6'-Me2dppz)(CH2COCH3)](PF6)2 (9b) while, analogously to a Cannizarro reaction, the reaction with benzaldehyde forms the bridging benzoate complex [Ru2(trpy)2(6,6'-Me2dppz)(C6H4CO2)](PF6)2 (11b). The bridging azide complex [Ru2(trpy)2(6,6'-Me2dppz)mu-N3](PF6)2 (10b) is formed by reaction of 6b with (CH3)3-SiN3. Additionally, the chloride ligands of the monometallic complexes of "in"-[Ru(trpy)(dpo)Cl](PF6) (1d), "in"-[Ru(trpy)(4,4'-Me2dpo)Cl](PF6)] (1e), and "out"-[Ru(trpy)(dpo)Cl](PF6) (2d) were substituted with water to form their respective aqua complexes, 4d, 4e, and 5d. All of the complexes exhibit broad unsymmetrial absorption bands in the visible portion of the electromagnetic spectrum. The dimetallic complexes 3b and 3c exhibit two, 1e- reversible oxidation waves at +0.72 and +1.15 V, and at +0.64 and +1.13 V, respectively. These complexes were not emissive.  相似文献   

13.
The unique behavior of a new Ru(II) diimine complex, Ru(bpy)(2)(L)(2+) (where L is 4-methyl-4'-[p-(dimethyl- amino)-alpha-styryl]-2,2'-bipyridine, bpy is 2,2'-bipyridine), was studied in detail. Due to the strong electron donating property of the amino group, an ILCT (intraligand charge transfer) state is involved either in the absorption spectra or in the time-resolved emission spectra. Dual emission based on (3)MLCT and (3)ILCT states was observed at room temperature for the first time via a time-resolved technique in Ru(II) diimine complexes.  相似文献   

14.
The metal-to-ligand charge-transfer (MLCT) excited states of Ru(bpy)(2)(deeb)(PF(6))(2), where bpy is 2,2-bipyridine and deeb is 4,4'-(CO(2)CH(2)CH(3))(2)-2,2'-bipyridine, in dichloromethane were found to be efficiently quenched by iodide at room temperature. The ionic strength dependence of the UV-visible absorption spectra gave evidence for ion pairing. Iodide was found to quench the excited states by static and dynamic mechanisms. Stern-Volmer and Benesi-Hildebrand analysis of the spectral data provided a self-consistent estimate of the iodide-Ru(bpy)(2)(deeb)(2+) adduct in dichloromethane, K = 59 700 M(-1). Transient absorption studies clearly demonstrated an electron-transfer quenching mechanism with transient formation of I(2)(*)(-) in high yield, phi = 0.25 for 355 or 532 nm excitation. For Ru(bpy)(2)(deeb)(PF(6))(2) in acetonitrile, similar behavior could be observed at higher iodide concentrations than that required in dichloromethane. The parent Ru(bpy)(3)(2+) compound also ion pairs with iodide in CH(2)Cl(2), and light excitation gave a higher I(2)(*)(-) yield, phi = 0.50. X-ray crystallographic, IR, and Raman data gave evidence for interactions between iodide and the coordinated deeb ligand in the solid state.  相似文献   

15.
A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)2-3,5}-2,2':6',2' '-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)2, and [Ru(TPBr)2](PF6)2, synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)2 (7) and [Ru(TPPdCl)2](PF6)2 (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)2](PF6)2 (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono- and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (1)MLCT (Ru --> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)2]2+ indicates stabilization of the luminescent 3MLCT state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)2, are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)2} chromophoric unit and the (non)metalated NCN-pincer moiety.  相似文献   

16.
Chen M  Li H  Shao J  Huang Y  Xu Z 《Inorganic chemistry》2011,50(6):2043-2045
In this correspondence, we report on the first preparation of [Ru(bpy)(2)(dppz)](2+)-intercalated (bpy = 2,2'-bipyridine; dppz = dipyrido[3,2-a:2',3'-c]phenazine) DNA films on an indium-tin oxide surface via a solution-based self-standing strategy, carried out by the direct mixing of aqueous solutions of both anionic DNA and cationic metallointercalator at a molar ratio of 5:6. The luminescence of a [Ru(bpy)(2)(dppz)](2+)-intercalated DNA cast film is studied and found to show excellent tunable characteristics by Cu(2+) ions and ethylenediaminetetraacetic acid addition.  相似文献   

17.
The mixed-metal supramolecular complexes [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2':6',2'-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were synthesized and characterized. These complexes contain ruthenium bridged by tppz to platinum centers to form stereochemically defined linear assemblies. X-ray crystallographic determinations of the two complexes confirm the identity of the metal complexes and reveal intermolecular interactions of the Pt sites in the solid state for [(tpy)Ru(tppz)PtCl](PF6)3 with a Pt...Pt distance of 3.3218(5) A. The (1)H NMR spectra show the expected splitting patterns characteristic of stereochemically defined mixed-metal systems and are assigned with the use of (1)H-(1)H COSY and NOESY. Electronic absorption spectroscopy displays intense ligand-based pi --> pi* transitions in the UV and MLCT transitions in the visible. Electrochemically [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 display reversible Ru (II/III) couples at 1.63 and 1.83 V versus Ag/AgCl, respectively. The complexes display very low potential tppz (0/-) and tppz(-/2-) couples, relative to their monometallic synthons, [(tpy)Ru(tppz)](PF6)2 and [Ru(tppz)2](PF6)2, consistent with the bridging coordination of the tppz ligand. The Ru(dpi) --> tppz(pi*) MLCT transitions are also red-shifted relative to the monometallic synthons occurring in the visible centered at 530 and 538 nm in CH3CN for [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4, respectively. The complex [(tpy)Ru(tppz)PtCl](PF6)3 displays a barely detectable emission from the Ru(dpi) --> tppz(pi*) (3)MLCT in CH 3CN solution at RT. In contrast, [ClPt(tppz)Ru(tppz)PtCl](PF6)4 displays an intense emission from the Ru(dpi) --> tppz(pi*) (3)MLCT state at RT with lambda max(em) = 754 nm and tau = 80 ns.  相似文献   

18.
The synthesis and photophysical and electrochemical properties of tris(homoleptic) complexes [Ru(tpbpy)3](PF6)2 (1) and [Os(tpbpy)3](PF6)2 (2) (tpbpy = 6'-tolyl-2,2':4',2' '-terpyridine) are reported. The ligand tpbpy is formed as the side product during the synthesis of 4'-tolyl-2,2':6',2' '-terpyridine (ttpy) and characterized by single-crystal X-ray diffraction: monoclinic, P21/c. The tridentate tpbpy coordinates as a bidentate ligand. The complexes 1 and 2 exhibit two intense absorption bands in the UV region (200-350 nm) assignable to the ligand-centered (1LC) pi-pi* transitions. The ruthenium(II) complex exhibits a broad absorption band at 470 nm while the osmium(II) complex exhibits an intense absorption band at 485 nm and a weak band at 659 nm assignable to the MLCT (dpi-pi*) transitions. A red shifting of the dpi-pi* MLCT transition is observed on going from the Ru(II) to the Os(II) complex as expected from the high-lying dpi Os orbitals. These complexes exhibit ligand-sensitized emission at 732 and 736 nm, respectively, upon light excitation onto their MLCT band through excitation of higher energy LC bands at room temperature. The MLCT transitions and the emission maxima of 1 and 2 are substantially red-shifted compared to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2. The emission of both the complexes in the presence of acid is completely quenched indicating that the emission is not due to the protonation of the coordinated ligands. Our results indicate the occurrence of intramolecular energy transfer from the ligand to the metal center. Both the complexes undergo quasi-reversible metal-centered oxidation, and the E1/2 values for the M(II)/M(III) redox couples (0.94 and 0.50 V versus Ag/Ag+ for 1 and 2, respectively) are cathodically shifted with respect to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2 (E1/2 = 1.28 and 1.09 V versus Ag/Ag+, respectively). The tris(homoleptic) Ru(II) and Os(II) complexes 1 and 2 could be used to construct polynuclear complexes by using the modular synthetic approach in coordination compounds by exploiting the coordinating ability of the pyridine substituent. Furthermore, these complexes offer the possibility of studying the influence of electron-withdrawing and electron-donating substituents on the photophysical properties of Ru(II) and Os(II) polypyridine complexes.  相似文献   

19.
[Ru(bpy)(2)(Mebpy-COOH)](PF(6))(2).3H(2)O (1), [Ru(phen)(2)(Mebpy-COOH)](ClO(4))(2).5H(2)O (2), [Ru(dppz)(2)(Mebpy-COOH)]Cl(2).9H(2)O (3), and [Ru(bpy)(dppz)(Mebpy-COOH)](PF(6))(2).5H(2)O (4) (bpy = 2,2'-bipyridine, Mebpy-COOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid, phen = 1,10-phenanthroline, dppz = dipyrido[3,2,-a;2',3-c]phenazine) have been synthesized and characterized spectroscopically and by microanalysis. The [Ru(Mebpy-COOH)(CO)(2)Cl(2)].H(2)O intermediate was prepared by reaction of the monocarboxylic acid ligand, Mebpy-COOH, with [Ru(CO)(2)Cl(2)](n), and the product was then reacted with either bpy, phen, or dppz in the presence of an excess of trimethylamine-N-oxide (Me(3)NO), as the decarbonylation agent, to generate 1, 2, and 3, respectively. For compound 4, [Ru(bpy)(CO)Cl(2)](2) was reacted with Mebpy-COOH to yield [Ru(bpy)(Mebpy-COOH)(CO)Cl](PF(6)).H(2)O as a mixture of two main geometric isomers. Chemical decarbonylation in the presence of dppz gave 4 also as a mixture of two isomers. Electrochemical and spectrophotometric studies indicated that complexes 1 and 2 were present as a mixture of protonated and deprotonated forms in acetonitrile solution because of water of solvation in the isolated solid products. The X-ray crystal structure determination on crystals of [Ru(bpy)2(MebpyCOO)][Ru(bpy)(2)(MebpyCOOH)](3)(PF(6))(7), 1a, and [Ru(phen)(2)(MebpyCOO)](ClO(4)).6H(2)O, 2a, obtained from solutions of 1 and 2, respectively, revealed that 1a consisted of a mixture of protonated and deprotonated forms of the complex in a 1:3 ratio and that 2a consisted of the deprotonated derivative of 2. A distorted octahedral geometry for the Ru(II) centers was found for both complexes. Upon excitation at 450 nm, MeCN solutions of the protonated complexes 1-4 were found to exhibit emission bands in the 635-655 nm range, whereas the corresponding emission maxima of their deprotonated forms were observed at lower wavelengths. Protonation/deprotonation effects were also observed in the luminescence and electrochemical behavior of complexes 1-4. Comprehensive electrochemical studies in acetonitrile show that the ruthenium centers on 1, 2, 3, and 4 are oxidized from Ru(II) to Ru(III) with reversible potentials at 917, 929, 1052, and 1005 mV vs Fc(0/+) (Fc = ferrocene), respectively. Complexes 1 and 2 also exhibit an irreversible oxidation process in acetonitrile, and all compounds undergo ligand-based reduction processes.  相似文献   

20.
Two new ditopic ligands, 5,5"-azobis(2,2'-bipyridine) (5,5"-azo) and 5,5"-azoxybis(2,2'-bipyridine) (5,5"-azoxy), were prepared by the reduction of nitro precursors. Mononuclear and dinuclear Ru(II) complexes having one of these bridging ligands and 2,2'-bipyridine terminal ligands were also prepared, and their properties were compared with previously reported Ru(II) complexes having 4,4"-azobis(2,2'-bipyridine) (4,4"-azo). The X-ray crystal structure showed that 5,5"-azo adopts the trans conformation and a planar rodlike shape. The X-ray crystal structure of [(bpy)(2)Ru(5,5"-azo)Ru(bpy)(2)](PF(6))(4) (Ru(5,5"-azo)Ru) showed that the bridging ligand is in the trans conformation and nearly planar also in the complex and the metal-to-metal distance is 10.0 A. The azo or azoxy ligand in these complexes exhibits reduction processes at less negative potentials than the terminal bpy's due to the low-lying pi level. The electronic absorption spectra for the complexes having 5,5"-azo or 5,5"-azoxy exhibit an extended low-energy metal-to-ligand charge-transfer absorption. The ligands, 5,5"-azo and 5,5"-azoxy, and the mononuclear complex, [(bpy)(2)Ru(5,5"-azo)](2+), isomerize reversibly upon light irradiation. The low-energy MLCT state sensitizes the isomerization of the azo moiety in this complex. While [(bpy)(2)Ru(4,4"-azo)Ru(bpy)(2)](PF(6))(4) exhibits light switch properties, namely, significant electrochromism and a large luminescence enhancement, upon reduction, Ru(5,5"-azo)Ru does not show these properties. The radical anion formation upon reduction of these complexes has been confirmed by ESR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号