首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Xylene isomer separation is considered one of the seven separation challenges that changed the world. In addition, the high-energy demand of xylene separation highlights the need for efficient novel adsorbents. Herein, the liquid-phase separation potential of the anion-pillared hybrid material SIFSIX-1-Cu was studied for preferential adsorption of o-xylene and m-xylene over p-xylene, which was inspired by a previous complexation crystallization method for separating m-xylene. We report detailed experimental liquid-phase adsorption experiments, yielding selectivities of 3.0 for o-xylene versus p-xylene and 2.6 for m-xylene versus p-xylene. Our theoretical calculations thus provide a reasonable explanation that the xylene adsorption selectivity is attributed to the C−H⋅⋅⋅F interaction, and the host–guest interaction order agrees with the adsorption priority: o-xylene > m-xylene > p-xylene.  相似文献   

2.
Shou  Tianyu  Xu  Nan  Li  Yihan  Sun  Guojin  Bernards  Matthew T.  Shi  Yao  He  Yi 《Plasma Chemistry and Plasma Processing》2019,39(4):863-876

Xylene is a widely used solvent and industrial chemical, but it is also considered to be a volatile organic compound (VOC) pollutant. Meanwhile, non-thermal plasma (NTP) is a potential method for remediating VOC contaminants, especially aromatic hydrocarbons. During NTP degradation of xylene, the different oxidation mechanisms of three isomers, p-xylene, o-xylene and m-xylene, have attracted lots of attention but not been studied at the molecular level. In this study, the individual degradation rates of xylene isomers in a NTP system are measured. The results show the oxidation degradation rates have the following order: o-xylene?>?p-xylene?≈?m-xylene. Molecular dynamics simulations with an applied external electric field were adopted to examine the oxidation process of xylene isomers, as well. The oxidation rates from the simulations were calculated, the order of which is in a good agreement with the experimental results. The oxidation pathways of xylene isomers were analyzed more thoroughly to explain the rate differences. The external electrical field is found to have two effects: one is to speed up the oxidation rate of xylene isomers overall, and the other is to alter the oxidation pathways to increase the probability of the faster ring cleavage pathways of o-xylene.

  相似文献   

3.
The equilibrium adsorption of vapors of benzene, toluene, o-xylene, and gasoline in the temperature range 25-100°C and adsorbate content of 0.01-1.80 vol % on activated carbons obtained from plum stones and shells of peanut, walnut, and coconut was studied. The effect of temperature on the adsorption properties of the absorbents were analyzed. The isosteric heats of adsorption were calculated.  相似文献   

4.
Several calixarenes1–5 and benzopinacolone6 were recrystallized from 1:1:1 mixtures of the three xylene isomers.p-Iso-propylcalix[4]arene 1 was shown to extractp-xylene with 86% selectivity.p-Iso-propylbishomooxacalix[4]arene5 extractso-xylene with 84% selectivity.  相似文献   

5.
《Microporous Materials》1997,8(1-2):39-42
Liquid-phase competitive adsorption of three xylene isomers on ZSM-5 zeolites was studied. HZSM-5 zeolites exhibited an extremely high para-selectivity, this para-selectivity decreased with increasing adsorption temperatures. The introduction of Na+ enhanced the para-selectivity. It is apparent that such a high para-selectivity is caused solely by thermodynamic shape selectivity. The complete removal of impurities with small molecular dimensions, such as p-xylene and benzene, from commercial o- and m- xylenes could be attained by the repetition of the shape-selective adsorption on HZSM-5 zeolites.  相似文献   

6.
Adsorption of binary xylene mixtures in AEL and AFI networks was investigated using normal and biased GCMC simulations. Preferential o-xylene adsorption was evidenced in the simulations, as previously reported in single-component experimental data. In contrast to the FAU and MFI sieves, the AEL and AFI networks exhibit surprising azeotropic behavior. The selectivity switches from o-xylene to p-xylene at a gas phase mole fraction of ca. 0.5. Energy minimization was performed in the AlPO4-11 molecular sieve to determine the energy differences between the adsorption sites. The minimization study showed that AlPO4-11 has small adsorption energy differences between sites. The azeotropic behavior of the AEL and AFI networks can be explained using the two patch model proposed by Do and Do (Adsorption 5:319–329, 1999).  相似文献   

7.
Development of porous materials capable of capturing volatile organic compounds (VOCs), such as benzene and its derivatives, with high efficiency, selectivity, and reusability is highly demanded. Here we report unusual vapor adsorption behavior toward VOCs by a new porous solid, composed of a polyaromatic capsule bearing a spherical nanocavity with subnano-sized windows. Without prior crystallization and high-temperature vacuum drying, the porous polyaromatic solid exhibits the following five features: vapor adsorption of benzene over cyclohexane with 90 % selectivity, high affinity toward o-xylene over benzene and toluene with >80 % selectivity, ortho-selective adsorption ability (>50 %) from mixed xylene isomers, tight VOCs storage even under high temperature and vacuum conditions, and at least 5 times reusability for xylene adsorption. The observed adsorption abilities are accomplished at ambient temperature and pressure within 1 h, which has not been demonstrated by organic/inorganic porous materials reported previously.  相似文献   

8.
Separation of xylene isomers is one of the most important but most challenging and energy-intensive separation processes in the petrochemical industry. Here, we report an adaptive hydrogen-bonded organic framework (HOF-29) constructed from a porphyrin based organic building block 4,4′,4′′,4′′′-(porphyrin-5,10,15,20-tetrayl) tetrabenzonitrile (PTTBN), exhibiting the exclusive molecular recognition of p-xylene (pX) over its isomers of o-xylene (oX) and m-xylene (mX), as clearly demonstrated in the single crystal structure transformation and 1H NMR studies. Single crystal structure studies show that single-crystal-to-single-crystal transformation from the as-synthesized HOF-29 to the pX exclusively included HOF-29⊃pX is triggered by the encapsulation of pX molecules, accompanied by sliding of the 2D layers and local distortion of the ligand, which provides multiple C−H⋅⋅⋅π interactions.  相似文献   

9.
The reaction of 1,2,3-trimethylbenzene (1,2,3-TMB) over HY zeolite was investigated in a fixed-bed flow reactor at 200-300 °C under atmospheric pressure. The reaction products include toluene, pentamethylbenzene and isomers of xylene, 1,2,3-TMB and tetramethylbenzene. Based on the time-on-stream theory, the types and initial selectivities of these products were determined from plots of product selectivity. 1,2,4-TMB is initially produced from 1,2,3-TMB via isomerization whereas o-xylene, m-xylene, 1,2,3,4- and 1,2,3,5-tetramethylbenzene were primarily formed by disproportionation of 1,2,3-TMB. Isomerization and disproportionation obeyed first- and second-order kinetics, respectively; both reactions proceeded via a carbonium ion mechanism with the former occurring by methyl transfer on the benzene ring whereas the latter proceeded through the diphenylmethane transition state. The activation energies are 31.6 and 37.2 kJ mol?1 for isomerizaion and disproportionation, respectively.  相似文献   

10.
The selective synthesis of p-diethylbenzene (p-DEB) by disproportionation of ethylbenzene (EB) in the presence of aromatics like m-and p-xylene isomers has been studied over a pore size regulated HZSM-5 catalyst. The industrial feed having different compositions of ethylbenzene and xylene isomers was used for the experimentation. Hence, they were expected to hinder the movement of reactant molecules both on the external surface and within the zeolite channels. It was observed that irrespective of the different feed compositions the concentration of the xylene isomers was intact in the product. There is no other byproducts formation like para-ethylmethyl benzene. The effects of varying the concentration of aromatic compounds in the feed on ethylbenzene conversion and product distribution over the parent and modified H-ZSM-5 catalyst have been discussed. Ethylbenzene disproportionation reaction follows the pseudo first order reaction with an activation energy of 8.6 kcal/mol.  相似文献   

11.
Adsorption of a model nitrogen vapor on a range of complex nanoporous carbon structures is simulated by grand canonical Monte Carlo simulation for a single subcritical temperature above the bulk freezing point. Adsorption and desorption isotherms, heats of adsorption, and three-dimensional singlet distribution functions (SDFs) were generated. Inspection of the SDFs reveals significant levels of solidlike adsorbate at saturation even in the most complex of the microporous solids considered. This strongly suggests that solidlike adsorbate will also occur for simple subcritical vapors adsorbed on real noncrystalline solids such as microporous carbons at temperatures above the bulk freezing point, supporting indirect experimental observations. The presence of significant levels of solidlike adsorbate has implications for characterization of microporous solids where adsorbate density is used (e.g., determination of pore volume from loading). Detailed consideration of the SDF at different loadings for a model microporous solid indicates solidlike adsorbate forms at distributed points throughout the pore space at pressures dependent on the nature of the local porosity. The nature of the local porosity also dictates the freezing mechanism. A local freezing/ melting/refreezing process is also observed. Introduction of mesoporosity into the model causes hysteresis between the adsorption and desorption isotherms. Adsorption in the hysteresis loop occurs by a series of local condensation events. It appears as if the presence of adjacent microporosity and/or adsorbate within it affects the pressure at which these events occur. Reversal of the condensation during desorption occurs throughout the mesoporosity at a single pressure; this pressure is unaffected by the presence of adjacent microporosity or the adsorbate within it. It is also shown that the empirical concept of "pore size" is not consistent for describing adsorption in the complex solids considered here. A new concept is, therefore, proposed that seeks to account for the factors that affect local adsorption energy: local geometry, microtexture, surface atom density, and surface chemistry.  相似文献   

12.
c-Oriented columnar MFI films made by secondary growth of randomly oriented seed monolayers, deposited using sonication-assisted covalent attachment, exhibit n-hexane/2,2-dimethylbutane separation factor of up to 104, n-/i-butane separation factor of up to 50, and p-/o-xylene separation factor of up to 2. A MFI film from a-oriented seed layer shows lower separation factors for the linear vs. branched isomers but higher separation factor for p-/o-xylene.  相似文献   

13.
Various factors were found to affect the performance of MFI-type zeolite membranes in separating xylene isomers (p-xylene, PX; o-xylene, OX) by pervaporation. In this work the effect of membrane microstructure, membrane quality, and pervaporation operating conditions were investigated using three membrane microstructures: random, c-oriented, and h,0,h-oriented. Operation under pervaporation conditions means that high loadings of PX will be present in the framework; therefore, the role of PX–framework and PX–OX interactions needs to be taken into consideration. Single component experiments demonstrated that the order of experimentation with OX and PX will affect the ideal selectivity. Multi-component studies showed that membrane performance is highly dependent on the relative concentration of the isomers in the feed; the higher the PX concentration the lower the selectivity observed. However, although high selectivity (18) was observed at low PX concentrations in the feed, it was not stable over time. Similar trends were observed for all membrane microstructures but differences in the selectivity values occurred. The structural deformation caused by high loadings of PX into the silicalite crystal affects each microstructure differently, ultimately leading to differences in performance.  相似文献   

14.
Separating n-butene and i-butene by adsorption is an energy-efficient alternative, but designing porous adsorbents that distinguish the subtle differences between the isomers is extremely challenging. Currently, adsorbents that can sieve 1-butene isomers and are stable enough to withstand humid gas mixtures are largely unmet. Herein, we propose a robust ultramicroporous metal–organic framework (MET-Fe) that can separate 1-butene isomers through molecular exclusion. The pore aperture size (4.6 Å) precisely matches the kinetic diameters of the isomers, as verified by static and kinetic adsorption experiments and theoretical calculations. Furthermore, dynamic breakthrough experiments confirmed the excellent separation performance, easy regeneration, and remarkable reusability of MET-Fe in both dry and humid conditions. With its high selectivity, large breakthrough capacity, and outstanding stability, MET-Fe provides an ideal platform for industrial butene isomers separation.  相似文献   

15.
Vapour pressures of butyl acetate?+?benzene or toluene or o- or m- or p-xylene were measured by static method at 298.15?±?0.01?K over the entire composition range. The activity coefficients and excess molar Gibb's free energies of mixing (G E) for these binary mixtures were calculated by fitting vapour pressure data to the Redlich–Kister equation using Barker's method of minimizing the residual pressure. The G E values for the binary mixtures containing benzene are positive; while these are negative for toluene, ortho, meta and para xylene system over the whole composition range. The G E values of an equimolar mixture for these systems vary in the order: benzene?>?m-xylene?>?o-xylene?>?p-xylene?>?toluene  相似文献   

16.
The reaction mechanism for o‐xylene with OH radical and O2 was studied by density functional theory (DFT) method. The geometries of the reactants, intermediates, transition states, and products were optimized at B3LYP/6‐31G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single‐point calculations for all the stationary points were carried out at the B3LYP/6‐311++G(2df,2pd) level using the B3LYP/6‐31G(d,p) optimized geometries. Reaction energies for the formation of the aromatic intermediate radicals have been obtained to determine their relative stability and reversibility, and their activation barriers have been analyzed to assess the energetically favorable pathways to propagate the o‐xylene oxidation. The results of the theoretical study indicate that OH addition to o‐xylene forms ipso, meta, and para isomers of o‐xylene‐OH adducts, and the ipso o‐xylene adduct is the most stable among these isomers. Oxygen is expected to add to the o‐xylene‐OH adducts forming o‐xylene peroxy radicals. And subsequent ring closure of the peroxyl radicals to form bicyclic radicals. With relatively low barriers, isomerization of the o‐xylene bicyclic radicals to more stable epoxide radicals likely occurs, competing with O2 addition to form bicyclic peroxy radicals. The study provides thermochemical data for assessment of the photochemical production potential of ozone and formation of toxic products and secondary organic aerosol from o‐xylene photooxidation. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

17.
The ab initio and density functional (DFT) methods were performed on binary systems of N,N-dimethylformamide (DMF) with xylenes (o-, or m-, or p-xylene), and seven stable configurations were obtained with no imaginary frequencies. To obtain the interaction energies of these complexes, single-point energy calculations with basis set superposition error (BSSE) correction were carried out at B3LYP/6-31G* and MP2/6-31G* levels. The structures, Chelpg (charges from electrostatic potentials using a grid-based method) charge distribution and bond characteristics of the mentioned complexes were calculated. The results indicated the presence of double C–H···O hydrogen bonds between DMF and xylenes in these complexes and the interaction energies of hydrogen bonding between DMF and xylene systems decreased in the following sequence: DMF–o-xylene: a1 > DMF–m-xylene: b1 > DMF–p-xylene: c1.  相似文献   

18.
The derivative enthalpies of adsorption of m-xylene and p-xylene onto the NaY and BaY zeolites were measured at 150°C, then compared with those obtained at 25°C, and finally used to predict the selectivity of adsorption of xylene mixtures. Significant differences were observed as the temperature was elevated: for the NaY zeolite, the adsorbate-adsorbate interactions became prevalent, in contrast with the BaY zeolite, between zeolite and derivative interactions were stronger. The difference between the adsorption derivative enthalpies of the two xylenes displayed an abrupt variation from 2 molec. –1 for both zeolites, the filling from which selectivity towards m-xylene for the NaY zeolite and towards p-xylene for the BaY zeolite appeared. The preferentially adsorbed xylene was closely connected with the sense of this difference, which changed with the zeolite.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

19.
Processes for the production of xylenes, which occur in an integrated aromatic complex, are discussed. A brief overview of the work carried out at Indian Petrochemicals Corporation Limited for the development of zeolite-based catalytic processes for the production of aromatics is presented. This includes xylene isomerization, transalkylation and disproportionation of C7 and C9 aromatics for maximization of xylenes, selective disproportionation of toluene and selective alkylation of mono-alkylaromatics to p-dialkylbenzene. Achievements in the commercialization of zeolite-based catalysts and processes for isomerization of m-xylene to p- and o-xylene along with dealkylation of ethylbenzene, and for selective ethylation of ethylbenzene to produce p-diethylbenzene are highlighted.  相似文献   

20.
Multiwalled carbon nanotubes (CNTs) were oxidized by sodium hypochlorite (NaOCl) solution and were employed as adsorbents to study their characterizations and adsorption performance of benzene, toluene, ethylbenzene and p-xylene (abbreviated as BTEX) in an aqueous solution. The physicochemical properties of CNTs such as purity, structure and surface nature were greatly improved after oxidation, which significantly enhanced BTEX adsorption capacity. The adsorption capacity of CNT(NaOCl) increased with contact time and initial adsorbate concentration, but changed insignificantly with solution ionic strength and pH. A comparative study on the BTEX adsorption revealed that the CNT(NaOCl) had better BTEX adsorption as compared to CNTs and granular activated carbon. This suggests that the CNT(NaOCl) are efficient BTEX adsorbents and that they possess good potential for BTEX removal in wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号