首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于噪声特性的大气湍流退化图像多帧盲反卷积复原   总被引:6,自引:4,他引:2  
黄建明  沈忙作 《光学学报》2008,29(9):1686-1690
由于大气湍流和噪声的影响,造成观测目标图像的退化.为了目标的精确观测,根据噪声特性,结合符合物理意义的约束条件,提出了新的大气湍流图像盲反卷积复原最小化模型,并以共轭梯度数值优化方法交替迭代求解,复原观测目标图像.为验证提出的算法的有效性,在计算机上模拟参数为望远镜口径为2.0 m,大气相干长度为0.1 m,图像信噪比为10 dB的大气湍流退化和噪声污染的图像,以提出的盲反卷积复原方法复原,实验结果表明,提出的盲反卷积复原算法避免了传统的盲反卷积复原算法的缺陷,有效地克服大气湍流和噪声的影响,复原出了清晰的观测目标图像.该图像盲反卷积复原方法的研究,对地基望远镜的观测有重要的基础性作用.  相似文献   

2.
X-波段电子自旋成象   总被引:3,自引:3,他引:0  
报道了自行设计研制的X-波段ESR成象装置并用之对典型样品作了ESR成象测定;用解卷积和分析图象重建中卷积滤波法对自旋样品体系进行了二维的图象重建,获取了能反映真实自旋分布的二维自旋密度图象.  相似文献   

3.
X-波段电子自旋成象   总被引:2,自引:2,他引:0  
报道了自行设计研制的X-波段ESR成象装置并用之对典型样品作了ESR成象测定;用解卷积和分析图象重建中卷积滤波法对自旋样品体系进行了二维的图象重建,获取了能反映真实自旋分布的二维自旋密度图象.  相似文献   

4.
The broad spectrum of spin probes used for electron paramagnetic resonance imaging (EPRI) result in poor spatial resolution of the reconstructed images. Conventional deconvolution procedures can enhance the resolution to some extent but obtaining high resolution EPR images is still a challenge. In this work, we have implemented and analyzed the performance of a postacquisition deblurring technique to enhance the spatial resolution of the EPR images. The technique consists of two steps; noniterative deconvolution followed by iterative deconvolution of the acquired projections which are then projected back using filtered backprojection (FBP) to reconstruct a high resolution image. Further, we have proposed an analogous technique for iterative reconstruction algorithms such as multiplicative simultaneous iterative reconstruction technique (MSIRT) which can be a method of choice for many applications. The performance of the suggested deblurring approach is evaluated using computer simulations and EPRI experiments. Results suggest that the proposed procedure is superior to the standard FBP and standard iterative reconstruction algorithms in terms of mean-square-error (MSE), spatial resolution, and visual judgment. Although the procedure is described for 2D imaging, it can be readily extended to 3D imaging.  相似文献   

5.
Accelerating the imaging speed without sacrificing image structures plays an important role in magnetic resonance imaging. Under-sampling the k-space data and reconstructing the image with sparsity constraint is one efficient way to reduce the data acquisition time. However, achieving high acceleration factor is challenging since image structures may be lost or blurred when the acquired information is not sufficient. Therefore, incorporating extra knowledge to improve image reconstruction is expected for highly accelerated imaging. Fortunately, multi-contrast images in the same region of interest are usually acquired in magnetic resonance imaging protocols. In this work, we propose a new approach to reconstruct magnetic resonance images by learning the prior knowledge from these multi-contrast images with graph-based wavelet representations. We further formulate the reconstruction as a bi-level optimization problem to allow misalignment between these images. Experiments on realistic imaging datasets demonstrate that the proposed approach improves the image reconstruction significantly and is practical for real world application since patients are unnecessarily to stay still during successive reference image scans.  相似文献   

6.
When blurred images have saturated or over-exposed pixels, conventional blind deconvolution approaches often fail to estimate accurate point spread function (PSF) and will introduce local ringing artifacts. In this paper, we propose a method to deal with the problem under the modified multi-frame blind deconvolution framework. First, in the kernel estimation step, a light streak detection scheme using multi-frame blurred images is incorporated into the regularization constraint. Second, we deal with image regions affected by the saturated pixels separately by modeling a weighted matrix during each multi-frame deconvolution iteration process. Both synthetic and real-world examples show that more accurate PSFs can be estimated and restored images have richer details and less negative effects compared to state of art methods.  相似文献   

7.
An improved Richardson-Lucy algorithm based on local prior   总被引:2,自引:0,他引:2  
Ringing is one of the most common disturbing artifacts in image deconvolution. With a totally known kernel, the standard Richardson-Lucy (RL) algorithm succeeds in many motion deblurring processes, but the resulting images still contain visible ringing. When the estimated kernel is different from the real one, the result of the standard RL iterative algorithm will be worse. To suppress the ringing artifacts caused by failures in the blur kernel estimation, this paper improves the RL algorithm based on the local prior. Firstly, the standard deviation of pixels in the local window is computed to find the smooth region and the image gradient in the region is constrained to make its distribution consistent with the deblurring image gradient. Secondly, in order to suppress the ringing near the edge of a rigid body in the image, a new mask was obtained by computing the sharp edge of the image produced using the first step. If the kernel is large-scale, where the foreground is rigid and the background is smoothing, this step could produce a significant inhibitory effect on ringing artifacts. Thirdly, the boundary constraint is strengthened if the boundary is relatively smooth. As a result of the steps above, high-quality deblurred images can be obtained even when the estimated kernels are not perfectly accurate. On the basis of blurred images and the related kernel information taken by the additional hardware, our approach proved to be effective.  相似文献   

8.
Computer-aided tomography is a technique for providing a two-dimensional cross-sectional view of a three-dimensional object through the digital processing of many one-dimensional views (or projections) taken at different look directions. In acoustic reflection tomography, insonifying the object and then recording the backscattered signal provides the projection information for a given look direction (or aspect angle). Processing the projection information for all possible aspect angles enables an image to be reconstructed that represents the two-dimensional spatial distribution of the object's acoustic reflectivity function when projected on the imaging plane. The shape of an idealized object, which is an elliptical cylinder, is reconstructed by applying standard backprojection, Radon transform inversion (using both convolution and filtered backprojections), and direct Fourier inversion to simulated projection data. The relative merits of the various reconstruction algorithms are assessed and the resulting shape estimates compared. For bandpass sonar data, however, the wave number components of the acoustic reflectivity function that are outside the passband are absent. This leads to the consideration of image reconstruction for bandpass data. Tomographic image reconstruction is applied to real data collected with an ultra-wideband sonar transducer to form high-resolution acoustic images of various underwater objects when the sonar and object are widely separated.  相似文献   

9.
利用维纳滤波改善声透镜光声成像系统的分辨率   总被引:1,自引:1,他引:0  
为了克服衍射效应对光声成像系统分辨率的限制,需要采用逆卷积方法进行图像反演.从理论上分析了声透镜成像原理,模拟仿真了声透镜的点扩展函数对声透镜成像系统分辨率的影响和维纳滤波解卷积方法复原光声成像的过程,并利用自搭建的声透镜光声成像系统进行了深入的实验研究,得到了物平面上相距4 mm和3 mm的两个黑胶带点的直接成像光声...  相似文献   

10.
盲解卷积是在两个卷积因子未知的情况下,通过卷积结果来获知卷积因子的。不考虑噪声,针对高斯模糊图像,在初始估计点扩展函数之后,利用维纳滤波的方法进行频域迭代盲解卷积,达到图像恢复的目的。实验表明,恢复的图像纹理比较清晰,边缘有所改善,主观视觉效果显著。该算法提高了分辨率。  相似文献   

11.
In astronomical speckle imaging, deconvolving a shift-and-add (SAA) image has an advantage over deconvolving noisy specklegrams, because an SAA image is an integration of many specklegrams and has a relatively enhanced signal-tonoise ratio. In this paper, to reinforce the deconvolution of a single SAA image, we propose a multiframe deconvolution applied to multiple SAA images that are obtained by diversely recombining the same set of specklegrams to have different point spread functions. We have found that such diverse SAA images can be easily produced by permuting specklegrams to be processed by SAA. The results of experiments using simulated and observational data have shown a robustness of our present approach: in the previous approach of deconvolving a single SAA frame, the resulting object estimate is apt to be influenced by the given SAA frame and the estimation sometimes fails, whereas in the present approach, a reliable object image is stably reconstructed regardless of the given SAA frames.  相似文献   

12.
This paper proposes a new blind deconvolution method with additional phase spectral constraints for a blurred image. A degradation of an original image is mathematically modeled by a convolution of an original image and a point-spread function (PSF). The proposed method consists of the following three steps: (i) projection onto a complex set satisfying the phase spectral constraint in a frequency space; (ii) minimization of a cost function preserving the constrained phase spectra; and (iii) projection onto an image space satisfying nonnegative and support constraints. This method restores both the original image and the PSF with high accuracy. The effectiveness of the proposed method is verified by applying it to some blind deconvolution problems for digital images, and the experimental results show that the performance is superior to the conventional blind deconvolution methods.  相似文献   

13.
Recovery of degraded images due to motion blurring is a challenging problem in digital imaging. Most existing techniques on blind deblurring are not capable of removing complex motion blurring from the blurred images of complex structures. One promising approach is to recover the clear image using multiple images captured for the scene. However, in practice it is observed that such a multi-frame approach can recover a high-quality clear image of the scene only after multiple blurred image frames are accurately aligned during pre-processing, which is a very challenging task even with user interactions. In this paper, by exploring the sparsity of the motion blur kernel and the clear image under certain domains, we propose an alternative iteration approach to simultaneously identify the blur kernels of given blurred images and restore a clear image. Our proposed approach is not only robust to image formation noises, but is also robust to the alignment errors among multiple images. A modified version of linearized Bregman iteration is then developed to efficiently solve the resulting minimization problem. Experiments show that our proposed algorithm is capable of accurately estimating the blur kernels of complex camera motions with minimal requirements on the accuracy of image alignment. As a result, our method is capable of automatically recovering a high-quality clear image from multiple blurred images.  相似文献   

14.
This work devotes to the image deconvolution problem that restores clear image from its blurred and noisy measurements with little prior about the blur. A deconvolution method based on sparse and redundant representation theory is developed in this paper. It firstly represents the blur and image over different redundant dictionaries and imposes sparsity constraint to their representation coefficients respectively, then alternately estimates them using an iterative algorithm employing optimization technique. Experimental results on astronomical images show that the proposed method can achieve as good performance as the method requiring a known blur, which demonstrates its effectiveness.  相似文献   

15.
In the problem of blind image deconvolution, estimation of blurring kernel is the first and foremost important step. Quality of restored image highly depends upon the accuracy of this estimation. In this paper we propose a modified cepstrum domain approach combined with bit-plane slicing method to estimate uniform motion blur parameters, which improves the accuracy without any manual intervention. A single motion blurred image under spatial invariance condition is considered. It is noted that the fourth bit plane of the modified cepstrum carries an important cue for estimating the blur direction. With the exploration of this bit plane no other post processing is required to estimate blur direction. The experimental evaluation is carried out on both real-blurred photographs and synthetically blurred standard test images such as Berkeley segmentation dataset and USC-SIPI texture image database. The experimental results show that the proposed method is capable of estimating blur parameters more accurately than the existing methods.  相似文献   

16.
Although the use of blind deconvolution of image restoration is a widely known concept, only few reports have discussed in detail its application to solving problem of restoration of underwater range-gated laser images. A comparative study of underwater image restoration using the Richardson-Lucy algorithm, the least-squares algorithm, and the multiplicative iterative algorithm for blind deconvolution is presented. All the deconvolution approaches use denoised underwater images and Wells’ small angle approximation theory of derived point spread function as the initial object and degradation guess, respectively. Owing the underwater no-reference imaging environment, image quality judgment based on the blur metric method is incorporated in our comparison to determine the appropriate deconvolution iteration number for each algorithm, which objectively evaluates the image restoration results. The performance of the three algorithms applied to underwater image restoration is discussed and reported.  相似文献   

17.
Novel approach to single frame multichannel blind image deconvolution has been formulated recently as non-negative matrix factorization problem with sparseness constraints imposed on the unknown mixing vector that accounts for the case of non-sparse source image. Unlike most of the blind image deconvolution algorithms, the novel approach assumed no a priori knowledge about the blurring kernel and original image. Our contributions in this paper are: (i) we have formulated generalized non-negative matrix factorization approach to blind image deconvolution with sparseness constraints imposed on either unknown mixing vector or unknown source image; (ii) the criteria are established to distinguish whether unknown source image was sparse or not as well as to estimate appropriate sparseness constraint from degraded image itself, thus making the proposed approach completely unsupervised; (iii) an extensive experimental performance evaluation of the non-negative matrix factorization algorithm is presented on the images degraded by the blur caused by the photon sieve, out-of-focus blur with sparse and non-sparse images and blur caused by atmospheric turbulence. The algorithm is compared with the state-of-the-art single frame blind image deconvolution algorithms such as blind Richardson-Lucy algorithm and single frame multichannel independent component analysis based algorithm and non-blind image restoration algorithms such as multiplicative algebraic restoration technique and Van-Cittert algorithms. It has been experimentally demonstrated that proposed algorithm outperforms mentioned non-blind and blind image deconvolution methods.  相似文献   

18.
丛晓峰  章军  胡强 《应用光学》2020,41(6):1207-1213
雾天拍摄的图像存在颜色失真、图像细节模糊的问题,对成像设备采集到的图像质量造成了负面印象。针对雾天搜集图像存在的降质问题,提出了一种基于多尺度空洞卷积的对抗去雾网络。去雾网络的生成器由不同空洞率的卷积模块组成,结合多尺度的策略增加感受野并增强去雾效果;判别器采用多个卷积模块构成,用于区分生成的去雾图像与真实无雾图像;通过计算去雾图像和真实无雾图像之间的感知距离,优化图像的纹理结构并减少噪声信号。实验结果显示,提出算法在公开数据集上获得的峰值信噪比值为22.410 dB,结构相似性值为0.844,色差值为10.545。定量和定性评估表明,采用空洞卷积和感知损失技术设计的去雾网络能够有效地恢复图像的颜色信息和纹理结构。  相似文献   

19.
3D卷积自动编码网络的高光谱异常检测   总被引:1,自引:0,他引:1  
高光谱图像包含丰富的地物光谱信息,在遥感图像领域有着巨大的发展前景.高光谱图像异常检测无需任何先验光谱信息,便可检测出图像中的异常目标.因此,在国防军事和民用领域都有广泛的应用,是现阶段高光谱图像处理领域的研究热点.然而,高光谱图像存在数据复杂、冗余性强、未标记以及样本数量少等特点,这给高光谱图像异常检测带来了很大的挑...  相似文献   

20.
Kopriva I 《Optics letters》2005,30(23):3135-3137
Single-frame multichannel blind deconvolution is formulated by applying a bank of Gabor filters to a blurred image. The key observation is that spatially oriented Gabor filters produce sparse images and that a multichannel version of the observed image can be represented as a product of an unknown nonnegative sparse mixing vector and an unknown nonnegative source image. Therefore a blind-deconvolution problem is formulated as a nonnegative matrix factorization problem with a sparseness constraint. No a priori knowledge about the blurring kernel or the original image is required. The good experimental results demonstrate the viability of the proposed concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号