首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we consider the existence and uniqueness of stationary solution to the bipolar quantum hydrodynamic model in one dimensional space with general non-constant doping profile. The existence of the stationary solution is proved by Leray-Schauder fixed-point theorem and a crucial truncation technique is used to derive the positive upper and lower bounds of the stationary solution. The uniqueness of the stationary solution is shown by a delicate energy estimate.  相似文献   

2.
ABSTRACT

We study the initial boundary value problem of bipolar semiconductor hydrodynamic model with recombination-generation rate for the non-constant doping profile. The new feature is that the current distribution for electrons and holes is not constant. In order to overcome this difficulty, the existence and uniqueness of a subsonic stationary solution are first established by elliptic theorem. Then, for such an Euler–Poisson system, we prove, by means of a technical energy method, that the subsonic solutions are unique, exist globally and asymptotically converge to the corresponding stationary solutions. An exponential decay rate is also derived.  相似文献   

3.
We consider a one-dimensional bipolar hydrodynamic model of semiconductors. Although some results exist for the bipolar case, almost their conditions (the boundary condition, the doping profile, etc.) are far from practical application. In the present paper, under a condition appropriate for engineering, we shall prove the existence and the uniqueness of classical solutions for the stationary problem. The most difficult point is to obtain the bounded estimate and the energy estimate.  相似文献   

4.
The authors study the asymptotic behavior of the smooth solutions to the Cauchy problems for two macroscopic models (hydrodynamic and drift-diffusion models) for semiconductors and the related relaxation limit problem. First, it is proved that the solutions to these two systems converge to the unique stationary solution time asymptotically without the smallness assumption on doping profile. Then, very sharp estimates on the smooth solutions, independent of the relaxation time, are obtained and used to establish the zero relaxation limit.  相似文献   

5.
In this paper, we present a bipolar hydrodynamic model from semiconductor devices and plasmas, which takes the form of bipolar isentropic Euler–Poisson with electric field and frictional damping added to the momentum equations. We firstly prove the existence of the stationary solutions. Next, we present the global existence and the asymptotic behavior of smooth solutions to the initial boundary value problem for a one-dimensional case in a bounded domain. The result is shown by an elementary energy method. Compared with the corresponding initial data case, we find that the asymptotic state is the stationary solution.  相似文献   

6.
In this paper we study well-posedness and asymptotic behavior of solution of a free boundary problem modeling the growth of multi-layer tumors under the action of an external inhibitor. We first prove that this problem is locally well-posed in little Hölder spaces. Next we investigate asymptotic behavior of the solution. By computing the spectrum of the linearized problem and using the linearized stability theorem, we give the rigorous analysis of stability and instability of all stationary flat solutions under the non-flat perturbations. The method used in proving these results is first to reduce the free boundary problem to a differential equation in a Banach space, and next use the abstract well-posedness and geometric theory for parabolic differential equations in Banach spaces to make the analysis.  相似文献   

7.
A one-dimensional quantum hydrodynamic model (or quantum Euler-Poisson system) for semiconductors with initial boundary conditions is considered for general pressure-density function. The existence and uniqueness of the classical solution of the corresponding steady-state quantum hydrodynamic equations is proved. Furthermore, the global existence of classical solution, when the initial datum is a perturbation of the steady-state solution, is obtained. This solution tends to the corresponding steady-state solution exponentially fast as the time tends to infinity.  相似文献   

8.
A fourth order parabolic system, the bipolar quantum drift-diffusion model in semiconductor simulation, with physically motivated Dirichlet-Neumann boundary condition is studied in this paper. By semidiscretization in time and compactness argument, the global existence and semiclassical limit are obtained, in which semiclassieal limit describes the relation between quantum and classical drift-diffusion models, Furthermore, in the case of constant doping, we prove the weak solution exponentially approaches its constant steady state as time increases to infinity.  相似文献   

9.
10.
In this paper we study the Cauchy problem for 1-D Euler–Poisson system, which represents a physically relevant hydrodynamic model but also a challenging case for a bipolar semiconductor device by considering two different pressure functions and a non-flat doping profile. Different from the previous studies (Gasser et al., 2003 [7], Huang et al., 2011 [12], Huang et al., 2012 [13]) for the case with two identical pressure functions and zero doping profile, we realize that the asymptotic profiles of this more physical model are their corresponding stationary waves (steady-state solutions) rather than the diffusion waves. Furthermore, we prove that, when the flow is fully subsonic, by means of a technical energy method with some new development, the smooth solutions of the system are unique, exist globally and time-algebraically converge to the corresponding stationary solutions. The optimal algebraic convergence rates are obtained.  相似文献   

11.
In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.  相似文献   

12.
The paper deal with the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.  相似文献   

13.
In this paper, we study the existence and nonlinear stability of the totally characteristic boundary layer for the quasilinear equations with positive definite viscosity matrix under the assumption that the boundary matrix vanishes identically on the boundary x=0. We carry out a series of weighted estimates to the boundary layer equations—Prandtl type equations to get the regularity and the far field behavior of the solutions. This allows us to perform a weighted energy estimate for the error equation to prove the stability of the boundary layers. The stability result finally implies the asymptotic limit of the viscous solutions.  相似文献   

14.
The paper of Dong [Dong, J. Classical solutions to one-dimensional stationary quantum Navier–Stokes equations, J. Math Pure Appl. 2011] which proved the existence of classical solutions to one-dimensional steady quantum Navier–Stokes equations, when the nonzero boundary value u 0 satisfies some conditions. In this paper, we obtain a different version of existence theorem without restriction to u 0. As a byproduct, we get the existence result of classical solutions to the stationary quantum Navier–Stokes equations.  相似文献   

15.
In this paper, we consider the compressible bipolar Navier–Stokes–Poisson equations with a non‐flat doping profile in three‐dimensional space. The existence and uniqueness of the non‐constant stationary solutions are established when the doping profile is a small perturbation of a positive constant state. Then under the smallness assumption of the initial perturbation, we show the global existence of smooth solutions to the Cauchy problem near the stationary state. Finally, the convergence rates are obtained by combining the energy estimates for the nonlinear system and the L2‐decay estimates for the linearized equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we establish the global existence and the asymptotic behavior of smooth solution to the initial-boundary value problem of Euler-Poisson system which is used as the bipolar hydrodynamic model for semiconductors with the nonnegative constant doping profile.  相似文献   

17.
We study a large time behavior of a solution to the initial boundary value problem for an isentropic and compressible viscous fluid in a one-dimensional half space. The unique existence and the asymptotic stability of a stationary solution are proved by S. Kawashima, S. Nishibata and P. Zhu for an outflow problem where the fluid blows out through the boundary. The main concern of the present paper is to investigate a convergence rate of a solution toward the stationary solution. For the supersonic flow at spatial infinity, we obtain an algebraic or an exponential decay rate. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in the spatial asymptotic point, the solution converges to the corresponding stationary solution with the same rate in time as time tends to infinity. An algebraic convergence rate is also obtained for the transonic flow. These results are proved by the weighted energy method.  相似文献   

18.
19.
We study the three-dimensional Cauchy problem of the Poisson–Nernst–Planck–Navier–Stokes equations. We first show that the corresponding stationary system has a unique semi-trivial solution under a general doping profile. Under initial small perturbations around such the semi-trivial stationary solution and small doping profile, we obtain the unique global-in-time solution to the non-stationary system. Moreover, we prove the asymptotic convergence of the solution toward the semi-trivial stationary solution as time tends to infinity.  相似文献   

20.
In this paper, we discuss a bipolar transient quantum hydrodynamic model for charge density, current density, and electric field in the quarter plane. This model takes the form of a classical Euler–Poisson system with the additional dispersion terms caused by the quantum (Bohn) potential. We show global existence of smooth solutions for the initial boundary value problem when the initial data are near the nonlinear diffusive waves, which are different from the steady state. We also show the asymptotical behavior of the global smooth solution towards the nonlinear diffusive waves and obtain the algebraic decay rates. These results are proved by elaborate energy methods. Finally, using the Fourier analysis, we obtain the optimal convergence rates of the solutions towards the nonlinear diffusion waves. As far as we known, this is the first result about the initial boundary value problem of the one‐dimensional bipolar quantum hydrodynamic model in the quarter plane. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号