首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a real Ginzburg-Landau equation, in a bounded domain of with a variable, generally non-smooth diffusion coefficient having a finite number of zeroes. By using the compactness of the embeddings of the weighted Sobolev spaces involved in the functional formulation of the problem, and the associated energy equation, we show the existence of a global attractor. The extension of the main result in the case of an unbounded domain is also discussed, where in addition, the diffusion coefficient has to be unbounded. Some remarks for the case of a complex Ginzburg-Landau equation are given.Received: May 6, 2002; revised: October 3, 2002  相似文献   

2.
This paper is concerned with a class of quasilinear parabolic and elliptic equations in a bounded domain with both Dirichlet and nonlinear Neumann boundary conditions. The equation under consideration may be degenerate or singular depending on the property of the diffusion coefficient. The consideration of the class of equations is motivated by some heat-transfer problems where the heat capacity and thermal conductivity are both temperature dependent. The aim of the paper is to show the existence and uniqueness of a global time-dependent solution of the parabolic problem, existence of maximal and minimal steady-state solutions of the elliptic problem, including conditions for the uniqueness of a solution, and the asymptotic behavior of the time-dependent solution in relation to the steady-state solutions. Applications are given to some heat-transfer problems and an extended logistic reaction–diffusion equation.  相似文献   

3.
We study a two-dimensional system in solid rotation at constant angular velocity driven by a self-consistent three-dimensional gravitational field. We prove the existence of stationary solutions of such a flat system in the rotating frame as long as the angular velocity does not exceed some critical value which depends on the mass. The solutions can be seen as stationary solutions of a kinetic equation with a relaxation-time collision kernel forcing the convergence to the polytropic gas solutions, or as stationary solutions of an extremely simplified drift-diffusion model, which is derived from the kinetic equation by formally taking a diffusion limit. In both cases, the solutions are critical points of a free energy functional, and can be seen as localized minimizers in an appropriate sense.  相似文献   

4.
In this paper, a bipolar transient quantum hydrodynamic model (BQHD) for charge density, current density and electric field is considered on the one-dimensional real line. This model takes the form of the classical Euler-Poisson system with additional dispersion caused by the quantum (Bohn) potential. We investigate the long-time behavior of the BQHD model and show the asymptotical self-similarity property of the global smooth solution. Namely, both of the charge densities tend to a nonlinear diffusion wave in large time, which is not a solution to the BQHD equation, but to the combined quasi-neutral, relaxation and semiclassical limiting model. Next, as a by-product, we can compare the large-time behavior of the bipolar quantum hydrodynamic models and of the corresponding classical bipolar hydrodynamic models. As far as we know, the nonlinear diffusion phenomena about the 1D BQHD is new.  相似文献   

5.
The long-time behavior of an integro-differential parabolic equation of diffusion type with memory terms, expressed by convolution integrals involving infinite delays and by a forcing term with bounded delay, is investigated in this paper. The assumptions imposed on the coefficients are weak in the sense that uniqueness of solutions of the corresponding initial value problems cannot be guaranteed. Then, it is proved that the model generates a multivalued non-autonomous dynamical system which possesses a pullback attractor. First, the analysis is carried out with an abstract parabolic equation. Then, the theory is applied to the particular integro-differential equation which is the objective of this paper. The general results obtained in the paper are also valid for other types of parabolic equations with memory.  相似文献   

6.
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.  相似文献   

7.
We study the problem of null controllability for viscous Hamilton–Jacobi equations in bounded domains of the Euclidean space in any space dimension and with controls localized in an arbitrary open nonempty subset of the domain where the equation holds. We prove the null controllability of the system in the sense that, every bounded (and in some cases uniformly continuous) initial datum can be driven to the null state in a sufficiently large time. The proof combines decay properties of the solutions of the uncontrolled system and local null controllability results for small data obtained by means of Carleman inequalities. We also show that there exists a waiting time so that the time of control needs to be large enough, as a function of the norm of the initial data, for the controllability property to hold. We give sharp asymptotic lower and upper bounds on this waiting time both as the size of the data tends to zero and infinity. These results also establish a limit on the growth of nonlinearities that can be controlled uniformly on a time independent of the initial data.  相似文献   

8.
We prove the Kneser property (i.e. the connectedness and compactness of the attainability set at any time) for reaction-diffusion systems on unbounded domains in which we do not know whether the property of uniqueness of the Cauchy problem holds or not.Using this property we obtain that the global attractor of such systems is connected.Finally, these results are applied to the complex Ginzburg-Landau equation.  相似文献   

9.
This paper is concerned with an inhomogeneous nonlocal dispersal equation. We study the limit of the re-scaled problem of this nonlocal operator and prove that the solutions of the re-scaled equation converge to a solution of the Fokker-Planck equation uniformly. We then analyze the nonlocal dispersal equation of an inhomogeneous diffusion kernel and find that the heterogeneity in the classical diffusion term coincides with the inhomogeneous kernel when the scaling parameter goes to zero.  相似文献   

10.
We study the asymptotic behavior of Lipschitz continuous solutions of nonlinear degenerate parabolic equations in the periodic setting. Our results apply to a large class of Hamilton–Jacobi–Bellman equations. Defining Σ as the set where the diffusion vanishes, i.e., where the equation is totally degenerate, we obtain the convergence when the equation is uniformly parabolic outside Σ and, on Σ, the Hamiltonian is either strictly convex or satisfies an assumption similar of the one introduced by Barles–Souganidis (2000) for first-order Hamilton–Jacobi equations. This latter assumption allows to deal with equations with nonconvex Hamiltonians. We can also release the uniform parabolic requirement outside Σ. As a consequence, we prove the convergence of some everywhere degenerate second-order equations.  相似文献   

11.
In this paper, we provide a blow-up mechanism to the modified Camassa–Holm equation with varying linear dispersion. We first consider the case when linear dispersion is absent and derive a finite-time blow-up result with an initial data having a region of mild oscillation. A key feature of the analysis is the development of the Burgers-type inequalities with focusing property on characteristics, which can be deduced from tracing the ratio between solution and its gradient. Using the continuity and monotonicity of the solutions, we then extend this blow-up criterion to the case of negative linear dispersion, and determine that the finite time blow-up can still occur if the initial momentum density is bounded below by the magnitude of the linear dispersion and the initial datum has a local mild-oscillation region. Finally, we demonstrate that in the case of non-negative linear dispersion the formation of singularities can be induced by an initial datum with a sufficiently steep profile. In contrast to the Camassa–Holm equation with linear dispersion, the effect of linear dispersion of the modified Camassa–Holm equation on the blow-up phenomena is rather delicate.  相似文献   

12.
We study the theory of scattering for a Schrödinger equation in an external time-dependent magnetic field in the Coulomb gauge, in space dimension 3. The magnetic vector potential is assumed to satisfy decay properties in time that are typical of solutions of the free wave equation, and even in some cases to be actually a solution of that equation. That problem appears as an intermediate step in the theory of scattering for the Maxwell-Schrödinger (MS) system. We prove in particular the existence of wave operators and their asymptotic completeness in spaces of relatively low regularity. We also prove their existence or at least asymptotic results going in that direction in spaces of higher regularity. The latter results are relevant for the MS system. As a preliminary step, we study the Cauchy problem for the original equation by energy methods, using as far as possible time derivatives instead of space derivatives.  相似文献   

13.
We consider a nonlinear diffusion equation on an infinite periodic metric graph. We prove that the terms which are irrelevant w.r.t. linear diffusion on the real line are irrelevant w.r.t. linear diffusion on the periodic metric graph, too. The proof is based on L1‐ estimates combined with Bloch wave analysis for periodic metric graphs.  相似文献   

14.
We study an energy conserving distributed parameter system described by a nonlinear string equation with the input and output at the boundary. We prove the existence of global smooth solutions to this quasilinear hyperbolic system if the initial data and the boundary input are small. If, moreover, the input function becomes zero after some finite time, then the state trajectories decay exponentially.  相似文献   

15.
We consider the existence of global solutions of the quasilinear wave equation with a boundary dissipation structure of an input-output in high dimensions when initial data and boundary inputs are near a given equilibrium of the system. Our main tool is the geometrical analysis. The main interest is to study the effect of the boundary dissipation structure on solutions of the quasilinear system. We show that the existence of global solutions depends not only on this dissipation structure but also on a Riemannian metric, given by the coefficients and the equilibrium of the system. Some geometrical conditions on this Riemannian metric are presented to guarantee the existence of global solutions. In particular, we prove that the norm of the state of the system decays exponentially if the input stops after a finite time, which implies the exponential stabilization of the system by boundary feedback.  相似文献   

16.
A reaction-diffusion system of activator-inhibitor type is studied on an N-dimensional ball with the homogeneous Neumann boundary conditions. We analyze the stability property of the spherically symmetric solutions and their symmetry-breaking bifurcations into layer solutions which are not spherically symmetric.  相似文献   

17.
We study the asymptotic behaviour in large diffusivity of inertial manifolds governing the long time dynamics of a semilinear evolution system of reaction and diffusion equations. A priori, we review both local and global dynamics of the system in scales of Banach spaces of Hilbert type and we prove the existence of a universal compact attractor for the equations. Extensions yield the existence of a family of nesting inertial manifolds dependent on the diffusion of the system of equations. It is introduced an upper semicontinuity notion in large diffusivity for inertial manifolds. The limit inertial manifold whose dimension is strictly less than those of the infinite dimensional system of semilinear evolution equations is obtained.  相似文献   

18.
Summary Spinodal decomposition, i.e., the separation of a homogeneous mixture into different phases, can be modeled by the Cahn-Hilliard equation - a fourth order semilinear parabolic equation. If elastic stresses due to a lattice misfit become important, the Cahn-Hilliard equation has to be coupled to an elasticity system to take this into account. Here, we present a discretization based on finite elements and an implicit Euler scheme. We first show solvability and uniqueness of solutions. Based on an energy decay property we then prove convergence of the scheme. Finally we present numerical experiments showing the impact of elasticity on the morphology of the microstructure.Research supported by DFG Priority Program Analysis, Modeling and Simulation of Multiscale Problems under AR234/5-2 and GA695/2-2  相似文献   

19.
This paper studies the Cauchy problem for the fast diffusion equation with a localized reaction. We establish the Fujita type theorem to the problem, and then obtain the diffusion-independent blow-up rate for the non-global solutions. Moreover, we prove that the blow-up set for the problem consists of a single point under large initial data. These conclusions are quite different from those for the slow diffusion case.  相似文献   

20.
In this paper, we apply the invariant region theory to get an a prioriL estimate of the relaxation approximated solutions to the Cauchy problem of a symmetrically hyperbolic system with stiff relaxation and dominant diffusion, and then obtain that the relaxation approximated solutions converge almost everywhere to the equilibrium state of the symmetrical system with the aid of the compactness framework about the scalar equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号