首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
An approximate expression for the Pauli kinetic energy functional Tp is advanced in terms of the Liu‐Parr expansion [S. Liu, R.G. Parr, Phys. Rev. A 1997 , 55, 1792] which involves a power series of the one‐electron density. We use this explicit functional for Tp to compute the value of the noninteracting kinetic energy functional Ts of 34 atoms, from Li to Kr (and their positive and negative monoions). In particular, we examine the effect that a shell‐by‐shell mean‐square optimization of the expansion coefficients has on the kinetic energy values and explore the effect that the size of the expansion, given by the parameter n, has on the accuracy of the approximation. The results yield a mean absolute percent error for 34 neutral atoms of 0.15, 0.08, 0.04, 0.03, and 0.01 for expansions with n = 3, 4, 5, 6, and 7, respectively (where ). We show that these results, which are the most accurate ones obtained to date for the representation of the noninteracting kinetic energy functional, stem from the imposition of shell‐inducing traits. We also compare these Liu‐Parr functionals with the exact but nonexplicit functional generated in the local‐scaling transformation version of DFT.  相似文献   

2.
Endohedral metalloborofullerenes (EMBFs) are novel boron analogues of the famous endohedral metallofullerenes (EMFs). Many EMBFs have been proposed by theoretical calculations thus far. However, in sharp contrast to EMFs, which trap most of the lanthanides with f electrons inside the cages, the corresponding lanthanide‐based EMBFs have never been reported. In this work, the encapsulation of Eu and Gd in the B38 and B40 fullerenes was studied by means of density functional theory calculations. Our results revealed that Gd@B38(9A), Eu@B40(8B2), and Gd@B40(7A″) all favor the endohedral configuration, and the electronic structures can be described as Gd3+@ , Eu2+@ , and Gd3+@ with jailed f electron spins. The large binding energies and sizable HOMO–LUMO gaps suggest that they may be achieved experimentally. They feature σ and π double aromaticity, and their excellent stabilities were confirmed by the Born–Oppenheimer molecular dynamics simulations. Finally, the infrared and UV/vis spectra were simulated to assist experimental characterization.  相似文献   

3.
A full dimensional time‐dependent quantum wavepacket approach is used to study the photodissociation dynamics of nitrous oxide for the X → 2 bound–bound transition based on new highly accurate potential energy and transition dipole moment surfaces. The computed 2 absorption spectra at room temperature are characterized by sharp vibrational structures that contribute slightly to the diffuse vibrational structures around the maximum peak at 180 nm of the first ultraviolet absorption band (from the contribution of 2 , 1 , and 2 states) of N2O. Transitions from different initial rovibrational states reveal that the sharp structures arise mainly from N2? O bending vibrations, whereas, at higher temperatures, the N2? O and N? NO stretching vibrations are responsible for enhancing the intensity of the structures. At absorption wavelengths 166 nm and 179 nm, vibrational quantum state distributions of N2 product fragments decrease monotonically with increasing vibrational quantum number v = 0, 1, 2. At 166 nm, rotational quantum state distributions of N2 at fixed v = 0 and v = 1 display multimodal profiles with maximum peaks at j = 77 and j = 75, respectively, whereas, the distributions at the 179 nm absorption wavelength display bimodal profiles with maximum peaks at j = 73 and j = 71, respectively. Accordingly, the presence of rotationally hot N2 from previous experimental and theoretical works in the first band strongly implies a significant influence of the 2 state in determining the final dissociation pathway of N2 + O. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
The mechanism of scavenging superoxide radical anion ( ) by dihydrolipoic acid (diLA) in absence and presence of the enzyme Manganese‐superoxide dismutase (Mn‐SOD) has been investigated using density functional theory. Mn‐SOD was modelled by a complex of a manganese cation (Mn2+) bonded to three similar molecules having a histidine ring each and a water molecule. It has been shown that the scavenging mechanism involves double hydrogen abstraction by from different pairs of neighboring sites of diLA. It has been found that diLA alone cannot scavenge superoxide radical anions efficiently as the barrier energies involved in the reactions are very high. However, in presence of Mn‐SOD, owing to its catalytic action, the corresponding reactions become barrierless due to which superoxide radical anions would be scavenged highly efficiently. H2O2 formed from superoxide radical anion due to double hydrogen abstraction from diLA is scavenged by diLA alone barrierlessly without involving Mn‐SOD or any other catalyst.  相似文献   

5.
The geometric and electronic structures of a series of silicon fluorides (n = 4 ? 6) were computationally studied with the aid of density functional theory (DFT) method with B3LYP and M06‐2X functionals and coupled cluster (CCSD and CCSD(T)) methods with 6‐311++G(d,p) basis set. The nature of the Si‐F bonds in these compounds was analyzed in the framework of the natural bond orbital theory and natural resonance theory. Energy characteristics (heats of reactions and energy barriers) of the dissociation reactions → SiF4 + F and → + F were calculated using the DFT and CCSD methods. The potential energy surface of elimination of a fluoride anion from has a specific topology with valley‐ridge inflection points corresponding to bifurcations of the minimal energy reaction path. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
A theoretical procedure has been developed and implemented to calculate the optical rotation of chiral molecules in ordered phase via origin‐independent diagonal components , of the optical activity tensor and origin‐independent components , for , of the mixed electric dipole‐electric quadrupole polarizability. Origin independence was achieved by referring these tensors to the principal axis system of the electric dipole dynamic polarizability at the same laser frequency ω. The approach has been applied, allowing for alternative quantum mechanical methods based on different gauges, to estimate near Hartree–Fock values for three chiral molecules, (2R)‐N‐methyloxaziridine C2NOH5, (2R)‐2‐methyloxirane (also referred to as propylene oxide) C3OH6, and ( )‐1,3‐dimethylallene C5H8, at two frequencies. The theoretical predictions can be useful for an attempt at measuring correspondent experimental values in crystal phase. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Considering different solar dyes configuration, four novel metal‐free organic dyes based on phenoxazine as electron donor, thiophene and cyanovinylene linkers as the ‐conjugation bridge and cyanoacrylic acid as electron acceptor were designed to optimize open circuit voltage and short circuit current parameters and theoretically inspected. Density functional theory and time‐dependent density functional theory calculations were used to study frontier molecular orbital energy states of the dyes and their optical absorption spectra. The results indicated that D2‐4 dyes can be suitable candidates as sensitizers for application in dye sensitized solar cells and among these three dyes, D3 showed a broader and more bathochromically shifted absorption band compared to the others. The dye also showed the highest molar extinction coefficient. This work suggests optimizing the configuration of metal‐free organic dyes based on simple D‐ ‐A configuration containing alkyl chain as substitution, starburst conformation, and symmetric double D‐ ‐A chains would produce good photovoltaic properties.  相似文献   

8.
Diamondoids are hydrocarbons having a carbon scaffold comprised from polymer‐like composites of adamantane cages. This article describes computed total energies and “SWB‐tension” energies (often referred to as “strain” energies) for species having n adamantane or diamantane units sharing pairwise: one carbon atom (spiro‐[n]adamantane or spiro‐[n]diamantane); one C? C bond (one‐bond‐sharing‐[n]adamantane or one‐bond‐sharing‐[n]diamantane); or one chair‐shaped hexagon of carbon atoms (1234‐helical‐cata‐[n]diamantanes). Each of the five investigated polymer‐like types is considered either as an acyclic or a cyclic chain of adamantane‐ or diamantane‐unit cages. With increasing n values, SWB‐tension energies for acyclic aggregates are found to increase linearly, while the net SWB‐tension energies of cyclic aggregates often go thru a minimum at a suitable value of . In all five cases, a limiting common energy per unit ( ) is found to be approached by both cyclic and acyclic chains as , as revealed from plots of versus 1/n for acyclic chains and of versus 1/n2 for cyclic chains. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The tridiagonal J‐matrix approach has been used to calculate the low and moderately high‐lying eigenvalues of the rotating shifted Tietz–Hua (RSTH) oscillator potential. The radial Schrödinger equation is solved efficiently by means of the diagonalization of the full Hamiltonian matrix, with the Laguerre or oscillator basis. Ro–vibrational bound state energies for 11 diatomic systems, namely , , , NO, CO, , , , , , and NO+, are calculated with high accuracy. Some of the energy states for molecules are reported here for the first time. The results of the last four molecules have been introduced for the first time using the oscillator basis. Higher accuracy is achieved by calculating the energy corresponding to the poles of the S‐matrix in the complex energy plane using the J‐matrix method. Furthermore, the bound states and the resonance energies for the newly proposed inverted Tietz–Hua IRSTH‐potential are calculated for the H2‐molecule with scaled depth. A detailed analysis of variation of eigenvalues with n, quantum numbers is made. Results are compared with literature data, wherever possible. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Forward and backward electron/proton ionization/dissociation spectra from one‐dimensional non‐Born‐Oppenheimer H2 molecule exposed to ultrashort intense laser pulses ( W/cm2, λ = 800 nm) have been computed by numerically solving the time‐dependent Schrödinger equation. The resulting above‐threshold ionization and above‐threshold dissociation spectra exhibit the characteristic forward‐backward asymmetry and sensitivity to the carrier‐envelope phase (CEP), particularly for high energies. A general framework for understanding CEP effects in the asymmetry of dissociative ionization of H2 has been established. It is found that the symmetry breaking of electron‐proton distribution with π periodic modulation occurs for all CEPs except for ( integer) and the largest asymmetry coming from the CEP of . At least one of the electron and proton distributions is asymmetric when measured simultaneously. Inspection of the nuclear and electron wave packet dynamics provides further information about the relative contribution of the gerade and ungerade states of to the dissociation channel and the time delay of electrons in asymmetric ionization. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
First, the geometrical structure, energy band structure, density of states, and overlap population of the copper hydroxydiphosphate ( ) are investigated systematically using the first‐principles density functional method. The generalized gradient approximations (GGA)+U method is adopted to consider the on‐site coulomb repulsion on Cu 3d orbits. The theoretical structural results obtained by the geometry optimization agree well with the experimental data. Energy band structures show that the belongs to a semiconductor. It is found that the on‐site Coulomb repulsion plays a key role in the opening of the energy gap. The uppest valence band is found to be mainly contributed from O 2p and Cu 3d states, but the lowest conduction band is characterized by Cu 3d state. Furthermore, a strong hybridization between O‐2p and Cu‐3d orbits is observed. Then, the magnetization, bipartite entanglement, and the nearest‐neighbor correlations in such a cuprate are calculated by the infinite time‐evolving block decimation algorithm. Distinctive magnetization plateaus accompanied with some interesting bipartite entanglement and correlation plateaus are observed at T=0 k in the thermodynamic limit. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Shannon entropy (S), Rényi entropy (R), Tsallis entropy (T), Fisher information (I), and Onicescu energy (E) have been explored extensively in both free H atom (FHA) and confined H atom (CHA). For a given quantum state, accurate results are presented by employing respective exact analytical wave functions in r space. The p‐space wave functions are generated from respective Fourier transforms—for FHA these can be expressed analytically in terms of Gegenbauer polynomials, whereas in CHA these are computed numerically. Exact mathematical expressions of , are derived for circular states of a FHA. Pilot calculations are done taking order of entropic moments (α, β) as in r and p spaces. A detailed, systematic analysis is performed for both FHA and CHA with respect to state indices n, l, and with confinement radius (rc) for the latter. In a CHA, at small rc, kinetic energy increases, whereas decrease with growth of n, signifying greater localization in high‐lying states. At moderate rc, there exists an interplay between two mutually opposing factors: (i) radial confinement (localization) and (ii) accumulation of radial nodes with growth of n (delocalization). Most of these results are reported here for the first time, revealing many new interesting features. Comparison with literature results, wherever possible, offers excellent agreement.  相似文献   

13.
Methyldiazonium ion ( ) is an ultimate carcinogen that can methylate multiple sites in DNA/RNA. In present contribution, density functional theory calculations using the B3LYP and M06‐2X functionals and the 6‐31G(d,p) and aug‐cc‐pVDZ basis sets are carried out to study methylation reactions of at the different nucleophilic sites of DNA/RNA bases and their nucleosides. Total 12 nucleophilic sites, that is, the N2, N3, N7, and O6 sites of guanine; the N1, N3, N6, and N7 sites of adenine; O2 and N3 sites of cytosine and the O2 and O4 sites of thymine and uracil have been considered for study. Thus, a total of 30 reactions have been studied here. The polarizable continuum model is used for solvation calculations. The N7 site of guanine, N7(G), is found to be most reactive in all the reactions studied here, which is in agreement with experiment. However, the calculated reactivity of toward the N7(G) site in aqueous media follows the order: guanine > deoxyguanosine > guanosine. The reactivities of many other sites including the O6(G), O2(C), and N3(A) sites are also modified in going from DNA/RNA bases to their nucleosides and from DNA to RNA nucleosides. Thus, we note that the presence of sugar moiety significantly modifies the methylation pattern of bases caused by . © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The electronic structure of several many‐electron atoms, confined within a penetrable spherical box, was studied using the Hartree–Fock (HF) method, coupling the Roothaan's approach with a new basis set to solve the corresponding one‐electron equations. The resulting HF wave‐function was employed to evaluate the Shannon entropy, , in configuration space. Confinements imposed by impenetrable walls induce decrements on when the confinement radius, Rc, is reduced and the electron‐density is localized. For confinements commanded by penetrable walls, exhibits an entirely different behavior, because when an atom starts to be confined, delivers values less than those observed for the free system, in the same way that the results presented by impenetrable walls. However, from a confinement radius, shows increments, and precisely in these regions, the spatial restrictions spread to the electron density. Thus, from results presented in this work, the Shannon entropy can be used as a tool to measure the electron density delocalization for many‐electron atoms, as the hydrogen atom confined in similar conditions.  相似文献   

15.
Comprehensive investigations on the structural modifications of negative hydrogen ion within an impenetrable spherical domain has been performed in the framework of Ritz variational method. Electron correlation plays a major role in the formation of H ion. The Hylleraas‐type basis set expansion of wave function considered here incorporates the effect of electron correlation in an explicit manner. Energy values of and 1sn states of H ion within confined domain have been calculated. Although the singly excited states do not exist for a “free” H ion, well converged energy values of such states have been found within a wide range of confinement radius. The thermodynamic pressure felt by the ion inside the sphere is also estimated. The general trend shows successive destabilization of the excited energy levels with increase of pressure. The contribution of angular correlation in the energy values have been estimated. Evolution of and energy levels of H ion as quasi‐bound states are being reported.  相似文献   

16.
We have studied the CO oxidation over neutral, anionic, and cationic gold hexamer clusters using density functional theory which elucidates the effect of cluster charge state on the catalytic activity. Herein, we have considered the conventional bimolecular Langmuir–Hinshelwood mechanism with coadsorbed CO and O2 at the neighboring sites in all the clusters. Among the three clusters, entails lower barriers during the various steps of the oxidation mechanism. The stability of all the species including the transition states with respect to the interacting species in indicates no thermal activation. Our study suggests better catalytic activity of as compared to the neutral and cationic counterparts. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
We use the ansatz method to obtain the symmetric and antisymmetric solutions of a hyperbolic double‐well potential by solving the Heun differential equation. The Shannon entropy is studied. The position Sx and momentum Sp information entropies for the low‐lying two states N = 1, 2 are calculated. Some interesting features of the information entropy densities ρs(x) and ρs(p) as well as the probability density ρ(x) are demonstrated. We find that ρ(x) is equal or greater than 1 at positions for the allowed potential‐depth values of U0 = 595.84 (symmetric case) and U0 = 1092.8 (antisymmetric case). This arises from the fact that most of the density is less than 1, the curve has to rise higher than 1 to have a total area of 1 as required for all probability distributions. We find that the position information entropy Sx decreases with the potential strength but the momentum entropy Sp is contrary to the Sx. The Bialynicki‐Birula–Mycielski inequality is also tested and found to hold for these cases. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
A new series of divalent boron‐rare gas cations (Rg = He ∼ Rn, n = 1–4) have been predicted theoretically at the B3LYP, MP2, and CCSD(T) levels to present the structures, stability, charge distributions, bond natures, and aromaticity. The Rg B bond energies are quite large for heavy rare gases and increase with the size of the Rg atom. Because of steric hindrance new Rg atoms introduced to the B4 ring will weaken the Rg B bond. Thus in the Rg B bond has the largest binding energy 90–100 kcal/mol. p‐ has a slightly shorter Rg B bond length and a larger bond energy than o‐ . NBO and AIM analyses indicate that for the heavy Rg atoms Ar ∼ Rn the B Rg bonds have character of typical covalent bonds. The energy decomposition analysis shows that the σ‐donation from rare gases to the boron ring is the major contribution to the Rg B bonding. Adaptive natural density partitioning and nuclear‐independent chemical shift analyses suggest that both and have obvious aromaticity.  相似文献   

19.
In the course of a 5 μm high‐resolution infrared study of laser ablation products from carbon–sulfur targets, the ν1 vibrational mode region of linear C3S has been studied continuously from 2046 to 2065 cm?1. Besides the prominent vibrational fundamental, the region was found to feature the , and even hot bands, the latter two of which were observed for the first time. Owing to the high signal‐to‐noise ratio obtained, the ν1 mode of S could also be observed in natural abundance for the first time at high spectral resolution in the infrared. At 2061 cm?1, hidden inside the branch of the C3S ν1 fundamental mode, a weak new band is observed which exhibits very tight line spacing and stems from a heavy both carbon and sulfur containing carrier. On the basis of high‐level quantum‐chemical calculations of selected carbon–sulfur chains and other carbon‐rich cumulenes, this feature is attributed to the ν5 vibrational fundamental of linear SC7S, which stands for the first gas‐phase spectroscopic detection of this long cumulenic chain.  相似文献   

20.
The photodetachment of hydrogen negative ion near different inelastic surfaces is investigated by the semiclassical closed orbit theory for arbitrary laser polarization direction . A two‐term formula of photodetachment cross section consisting of a smooth background term and an oscillatory term is derived. The oscillatory term contains an extra angular factor that describes the dependence of oscillations in total cross section on the laser polarization direction. It is observed that the amplitude of oscillations in cross section reaches maximum at when laser polarization is parallel to the z‐axis and it approaches zero as the laser polarization direction becomes perpendicular to the z‐axis. It is also observed that as the reflection coefficient , which accounts for the inelastic behavior of the surfaces, increases the amplitude of oscillation also increases. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号