首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
The air oxidation of poly-p-xylylene films was studied at temperatures between 125 and 200°C. The oxidation kinetics were obtained from neutron activation (NA) oxygen analyses and infrared (IR) Spectroscopy. A correlation between the NA oxygen analyses and mechanical properties indicated that the amount of oxygen incorporated into these polymers before a significant degradation mechanical properties is about 1000 ppm for poly(dichloro-p-xylylene) and 5000 ppm for poly(monochloro-p-xylylene) or poly-p-xylylene. The activation energy for the oxidation of these polymers was about 30 kcal/mole. Long-term-use (100,000 hr) temperatures were also estimated for each of the poly-p-xylylenes studied. The 100,000-hr maximum continuous-use temperature is 112°C for poly(dichloro-p-xylylene), 72°C for poly(monochloro-p-xylylene), and 57°C for poly-p-xylylene.  相似文献   

3.
The morphology of poly(p-xylylene) ultrathin films prepared by vapor deposition polymerization on the surface of single-crystal silicon (100) and on the cleaved surface of mica at a substrate temperature of 20°C has been studied by atomic force microscopy. At the initial stage, the growth of the poly(p-xylylene) coating follows the island mechanism. Within the framework of pyramidal model of island growth, the mean diffusion length for monomer p-xylylene is calculated: For the single-crystal silicon, this parameter is 15 ± 3 nm; for the cleaved surface of mica, 9 ± 2 nm. The nature of the substrate and defects on its surface show a peculiar effect on the structure of the poly(p-xylylene) coating. Thus, at a low monomer flow, nucleation of polymer islands on the surface of silicon is predominantly homogeneous, whereas on the cleaved surface of mica, it is heterogeneous. A change in the monomer flow significantly affects the rate of nucleation of polymer islands.  相似文献   

4.
Poly(chloro-p-xylylene) was synthesized in a manner similar to poly(p-xylylene) using Gorham's method at various cryogenic temperatures. The effect of the sublimation rate of dimer on the kinetics of deposition, crystallinity, and crystalline structure was studied. Increasing the sublimation rate of the dimer increases the deposition rate similar to that of poly(p-xylylene). However, an increase in crystallinity, in contrast to Parylene N, is observed, although, in general, Parylene C has lower crystallinity relative to Parylene N. No polymorphism is observed either by decreasing the deposition temperature or by increasing the sublimation rate of the dimer. Solution annealing and isothermal annealing both bring about crystallization without any structural transformation. Solution annealing removes the oligomers and dimers, but no crystalline oligomers are ever detected under the scanning electron microscope (SEM). The surface topology of films synthesized from ambient temperature to ?40°C is very similar to Parylene N. At lower temperatures, in the region ?50 to ?60°C, a rod-type morphology is observed similar to Parylene N. The surface topology of samples synthesized at ?196°C is totally different from that of Parylene N. All low temperature synthesized samples are amorphous.  相似文献   

5.
Polychloro-p-xylylene (Parylene C) and poly-p-xylylene (Parylene N) films were synthesized in vacuum with and without the presence of 42 mtorr of argon at various deposition temperatures and three different dimer sublimation rates. Depending on the synthesis conditions, the morphology of the films can vary from a homogeneous (nonporous) structure to a heterogeneous (porous) structure. The transport coefficients of the gases He, O2, N2, and CO2 through these films were measured at 25°C. The transport coefficients for both types of films vary with the deposition temperature and the dimer sublimation rate. The variation, however, cannot be solely explained by the change of crystallinity. Anomalous transport behavior is observed in the homogeneous, as-synthesized polymers of relatively high crystalline content (above 20–30%). In many cases the permeabilities and diffusivities increase despite an increase in crystallinity. The effects of crystallization induced by isothermal and solvent annealing on the transport coefficients of polymers of Parylene C are different from those of Parylene N synthesized with or without argon. The mean pore size and effective porosity of the porous films were calculated from gas permeation data. For Parylene C and Parylene N porous films synthesized without argon, increasing the dimer sublimation rate or decreasing the deposition temperature increases the mean pore size but decreases the effective porosity. For Parylene N porous films synthesized in the presence of argon, increasing the dimer sublimation rate or decreasing the deposition temperature results in a decrease in the mean pore size but an increase in the effective porosity. Overall, no appreciable change in transport coefficients is observed upon addition of an inert gas.  相似文献   

6.

Poly(p-xylylene)—CdS (PPX—CdS) nanocomposite films with different thicknesses (~0.2, ~0.5, ~1, and ~1.5 μm) and concentrations of CdS from 5 to 90 vol.%, as well as single-component CdS and PPX films with various thicknesses were studied by X-ray diffraction. The films were synthesized on polished silicon or quartz substrates by low-temperature vapor deposition method. It was shown that CdS nanoparticles in PPX—CdS films, depending on their thickness and CdS content, can have an X-ray amorphous structure, a defect crystal structure (RCP structure), or a wurtzite-type crystal structure. Similar structures were observed for single-component CdS films of the corresponding thickness. The sizes of the coherent scattering regions of CdS were determined for some nanocomposite and single-component films. Poly(p-xylylene) in the studied nanocomposite films was characterized by an X-ray amorphous structure.

  相似文献   

7.
A new, general synthetic route to poly-p-xylylene and substituted poly-p-xylylenes is described. The key intermediate in the new process is di-p-xylylene [(2,2)p-cyclophane]. It has been found that di-p-xylylene is quantitatively cleaved by vacuum vapor-phase pyrolysis at 600°C. to two molecules of p-xylylene. p-Xylylene spontaneously polymerizes on condensation to form high molecular weight, linear poly-p-xylylene. The conversion of di-p-xylylene to poly-p-xylylene is quantitative. The process is adaptable to the preparation of a wide variety of substituted poly-p-xylylenes by pyrolysis of ring-substituted di-p-xylylenes and polymerization of the resultant substituted p-xylylenes. Many of these polymers are not attainable by any other route. All are linear and free of crosslinking. Evidence supporting the proposed mechanism of pyrolytic cleavage of every molecule of di-p-xylylene to two molecules of p-xylylene is presented. Tough, transparent polymeric films are obtained from the process when the polymerization of the p-xylylenes is conducted on glass or metal surfaces. Outstanding combinations of physical, electrical, and chemical properties are displayed by poly-p-xylylene, polychloro-p-xylylene, and other substituted polymers. A comparison of the relative merits of the original Szwarc route and the new di-p-xylylene route to poly-p-xylylenes is presented.  相似文献   

8.
1,1,9,9-Tetrafluoro[2.2]paracyclophane ( 1 ) was prepared successfully as white crystals in 72% yield via two-step reactions from 1,9-diketo[2.2]-paracyclophane. The polymerization of 1 by the vapor deposition method was carried out at pyrolysis temperature range of 400 to 800°C and deposition temperature range of ?20 to 20°C, and a tough, transparent poly(α,α-difluoro-p-xylylene) film was obtained in 72% yield at the pyrolysis temperature of 750°C and the deposition temperature of ?20°C. It was found that the pyrolysis of 1 gave a reactive α,α-difluoro-p-xylylene, which polymerized on the head-to-tail addition to give poly(α,α-difluoro-p-xylylene). Some properties such as solubility, thermal stability, glass transition temperature, and density for poly(α,α-difluoro-p-xylylene) were studied. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
It is known that by lowering the impact energy the sputter rate and surface transient width in SIMS will be reduced. However, few studies have been done at ultralow energies over a wide range of impact angles. This study examines the dependence of sputter rate and transient width as a function of O2+ primary ion energy (Ep = 250 eV, 500 eV and 1 keV) and incidence angles of 0–70°. The instrument used is the Atomika 4500 SIMS depth profiler and the sample was Si with 10 delta‐layers of Si0.7Ge0.3. We observed that the lowest transient width of 0.7 nm is obtainable at normal and near‐normal incidence with Ep ~ 250 eV and Ep ~ 500 eV. There is no significant improvement in transient width going down in energy from Ep ~ 500 to ~250 eV. The onset of roughening is also not obvious at Ep ~ 250 eV over the whole angular range studied. Although the sputter rate during the surface transient is normally different from that at steady state, only at Ep ~ 250 eV was it observed that the sputter rate remained fairly independent of depth. We conclude that the best working ranges to achieve a narrow transient width and accurate depth calibration are at Ep ~ 250 eV/0° < θ < 20°and 500 eV/0°< θ < 10°. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Chemical vapour deposition polymerisation of substituted [2.2]paracyclophanes is applied to the functionalised coating of stainless steel surfaces. Poly[o-trifluoroacetyl-p-xylylene-co-p-xylylene] ( 2a ), poly[o-hydroxymethyl-p-xylylene-co-p-xylylene] ( 2b ), poly[o-amino-p-xylylene-co-p-xylylene] ( 2c ) and poly(p-xylylene-2,3-dicarboxylic anhydride) ( 2d ) were deposited as thin layers.  相似文献   

11.
The molecular conformation and the crystal structure of α-form poly-p-xylylene has been determined by x-ray diffraction. The polymer has a monoclinic unit cell with a = 5.92, b = 10.64, c (fiber axis) = 6.55 Å, and β = 134.7°. Two chains pass through the unit cell, and the space groups is C2/m. The packing fraction is 0.705. One monomer unit makes up the fiber identity period and the internal rotation angles are 0° and 90° for the ? CH2? CH2? and ? CH2? ?? bonds, respectively. All benzene rings are in parallel orientation, perpendicular to the ac plane.  相似文献   

12.
Ab initio accurate all-electron relativistic molecular orbital Dirac–Fock self-consistent field calculations are reported for the linear symmetric XeF2 molecule at various internuclear distances with our recently developed relativistic universal Gaussian basis set. The nonrelativistic limit Hartree–Fock calculations were also performed for XeF2 at various internuclear distances. The relativistic correction to the electronic energy of XeF2 was calculated as ~ ?215 hartrees (?5850 eV) by using the Dirac–Fock method. The dominant magnetic part of the Breit interaction correction to the nonrelativistic interelectron Coulomb repulsion was included in our calculations by both the Dirac–Fock–Breit self-consistent field and perturbation methods. The calculated Breit correction is ~6.5 hartrees (177 eV) for XeF2. The relativistic Dirac–Fock as well as the nonrelativistic HF wave functions predict XeF2 to be unbound, due to neglect of electron correlation effects. These effects were incorporated for XeF2 by using various ab initio post Hartree–Fock methods. The calculated dissociation energy obtained using the MP 2(full) method with our extensive basis set of 313 primitive Gaussians that included d and f polarization functions on Xe and F is 2.77 eV, whereas the experimental dissociation energy is 2.78 eV. The calculated correlation energy is ~ ?2 hartrees (?54 eV) at the predicted internuclear distance of 1.986 Å, which is in excellent agreement with the experimental Xe—F distance of 1.979 Å in XeF2. In summary, electron correlation effects must be included in accurate ab initio calculations since it has been shown here that their inclusion is crucial for obtaining theoretical dissociation energy (De) close to experimental value for XeF2. Furthermore, relativistic effects have been shown to make an extremely significant contribution to the total energy and orbital binding energies of XeF2. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
A method of estimation is proposed for determining the effective depth of surface excitation. For this, the effective differential inverse inelastic mean free path (DIIMFP) is presumed to be represented as a linear combination of theoretical DIIMFPs for surface and bulk excitation, which are derived by the use of optical dielectric constants. The effective DIIMFP in the approach is derived by a reflected electron energy‐loss spectroscopy analysis based on the extended Landau approach. The present analysis for 1 kV electrons has led to a simple estimation of the effective depth for surface excitations (~14.5 Å for Al and ~21 Å for Ag), agreeing well with an estimation given by υ/ω s, where υ and ω s are the velocity of the primary electrons and the average surface plasmon frequency, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The crystal structure of poly(dithiotriethylene adipate) has been determined through the best fitting of calculated and experimental X‐ray diffraction powder profiles. A triclinic cell was found with dimensions a = 4.942 (7) Å, b = 4.702 (2) Å, c = 20.56 (2) Å, α = 88.9 (2)°, β = 61.0 (1)°, γ = 67.8 (1)°, P‐1 space group, and one chain in the unit cell. A full extended trans conformation of the chain fitted satisfactory the experimental data, yielding to a discrepancy factor Rp = 0.073. A comparison between the crystal structures of poly(dithiotriethylene adipate) and poly (thiodiethylene adipate) is proposed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2677–2682, 2005  相似文献   

15.
The polymorphism of isotactic poly(pentene-1) form I was studied by x-ray diffraction. Upon quenching from the melt at a temperature below 25°C, the films crystallized in a stable monoclinic form, which we have designated as form I (a = 22.4 ± 0.2 Å, b = 6.49 ± 0.05 Å, c = 21.2 ± 0.2 Å, β = 91 ± 1°). For higher quenching temperatures, a metastable form, form I′, appeared, which transforms to the normal modification upon aging (monoclinic, with: a = 24.3 ± 0.2 Å, b = 6.50 ± 0.05 Å, c = 19.3 ± 0.2 Å, β = 96 ± 2°). Both modifications have a 31 helical conformation. Limited changes in the packing mode could explain this polymorphism.  相似文献   

16.
In this paper, parylene/SiO2 composite films were reported to protect KDP crystals, indispensable cells in ICF experiments, from moisture. FTIR, UV-NIR spectra and XPS were used to analyze the properties of films. Laser damage threshold of films was also measured. With porous silica coating on surface of parylene film, the transmittance of dual layers can be raised to more than 91%. KDP crystals with poly(p-xylylene)/SiO2 coating could work well in ambient atmosphere for more than half a year.  相似文献   

17.
The crystal structure of poly(m-phenyulene isophthalamide) was determined by x-ray analysis. The triclinic cell, with a = 5.27 Å, b = 5.25 Å, c (fiber axis) = 11.3 Å, α = 111.5°, β = 111.4° and γ = 88.0° and space group P1, contains one monomeric unit. The crystal density is 1.47 g/cc. The molecules in the crystal are contracted by 1 Å per monomeric unit from the fully extended conformation, and the planes of the benzene rings and adjacent amide groups make angles of about 30°. The crystal is composed of molecular chains connected by N? H···O hydrogen bonds along the a and b axes forming a “jungle gym” network structure. The low tensile modulus of this polymer as compared with that of poly(p-phenylene terephthalamide) is attributed to the contracted molecular conformation.  相似文献   

18.
Homogeneous precursor/precursor solutions with various compositions were obtained with appreciably high solid contents in N-methyl-2-pyrrolidone from soluble poly(amic diethyl ester) precursors of rodlike poly(p-phenylene biphenyltetracarboximide) (BPDA-PDA) and flexible poly(4,4′-oxydiphenylene biphenyltetracarboximide) (BPDA-ODA), which are hydrolytically more stable as well as more soluble than the corresponding poly(amic acid)s being equilibrated with the constituent monomers. Both optical microscopic and light scattering measurements showed that the dried precursor blend films and resultant polyimide composite films were optically transparent, regardless of compositions and process conditions. The composite films showed a single Tg behavior. However, for the composite of 30 wt % BPDA-PDA dispersed in the matrix of 70 wt % BPDA-ODA, a smectic crystalline-like aggregation of the BPDA-PDA component was detected on wide-angle x-ray diffraction patterns, indicative of microscopic phase separation between the two components. This phase separation was not detected on the optical microscopy, light scattering, and dynamic mechanical thermal analysis because of their resolution limits: Optical microscopy has a resolution of submicrometers, whereas dynamic mechanical thermal analysis and light scattering have a resolution of ca. 50 Å. Therefore, it is speculated that in the composite films BPDA-PDA and BPDA-ODA polyimide molecules have demixed on the scale of a few nanometers. The mean long periodicity, which was estimated from the small-angle x-ray scattering pattern, varied from 134 to 170 Å as the content of BPDA-ODA component increased. In addition, mechanical properties of the composite films were characterized. ©1995 John Wiley & Sons, Inc.  相似文献   

19.
Head‐to‐tail regioregular poly(3‐heptanoylthiophene) (PHOT) was synthesized by Ni‐catalyzed polycondensation of the 2,2‐dimethyl‐1,3‐propanediol‐protected Grignard monomer followed by deprotection. Cyclic voltammetric (CV) study demonstrates that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of PHOT are 0.5 eV lower in energy than those of the head‐to‐tail poly(3‐hexylthiophene) (HT‐P3HT). Their optical band gaps are essentially the same. Incomplete photoluminescence (PL) quenching was observed in thin films of the 1:1 blend of PHOT and HT‐P3HT. PHOT displayed a glass transition at ~269 °C and decomposed at ~300 °C according to differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Wide‐angle X‐ray diffraction (WAXD) study showed that PHOT exists in a not highly ordered state in solid films especially in the π‐stacking direction. Only p‐channel activity was observed in field‐effect transistors (FETs) for PHOT. The hole mobility was on the order of 10?4 cm2 V?1 s?1. Photovoltaic devices with an active layer of 1:1 blend of PHOT and PC71BM had a power conversion efficiency (PCE) of ~0.5%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
Ab initio all-electron fully relativistic Dirac–Fock self-consistent field and Dirac–Fock–Breit calculations are reported for the XeF4 molecule at various internuclear distances assuming the experimental D4h geometry with our recently developed relativistic universal Gaussian basis set. The nonrelativistic limit Hartree–Fock calculations were also performed for XeF4 at various internuclear distances. The calculated relativistic correction to the total energy of molecule at the Dirac–Fock level is ~ ?5856 eV, whereas the magnetic part of the Breit correction to the electron-electron interaction is calculated as ~ 177 eV. The electron correlation effects were included in the nonrelativistic Hartree–Fock calculations using the second-order Møller-Plesset (MP 2) theory, and the calculated correlation energy for XeF4 is ?71 eV. The basis-set superposition error (BSSE ) was estimated by using the counterpoise method for Xe and F. The inclusion of both the relativistic and electron correlation effects in the calculated total energies of F, Xe, and XeF4 predicts the Xe—F bond length and dissociation energy of XeF4 as 1.952 Å and 5.59 eV, respectively, which are in excellent agreement with the experimental values of 1.953 Å and 5.69 eV, respectively, for XeF4. The contribution of the electron correlation and relativistic effects to the dissociation energy of XeF4 is 8.11 and 0.05 eV, respectively. The Breit interaction, however, contributes only 0.02 eV to the dissociation energy of XeF4. Electron correlation is most significant for the prediction of an accurate value of dissociation energy, whereas relativistic effects are very important for the prediction of spin-orbital splitting as well as the energies of the orbitals, especially the inner orbitals of XeF4. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号