首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of lanthanide(III) (La–Lu) and Y(III) with 1-hydroxy-2-naphthoic acid were obtained as crystalline compounds with a general formula Ln[C10H6(OH)COO]3nH2O:n=6 for La–Tm and Y, n=2 for Yb and n=0 for Lu. IR spectra of the prepared complexes were recorded, and their thermal decomposition in air were investigated. Spectroscopic data suggest that in the coordination of metal-organic ligand only oxygen atoms from the carboxylate group take part. When heated, the complexes decompose to the oxides Ln2O3, CeO2, Pr6O11 and Tb4O7 with intermediate formation of Ln(C11H7O3)(C11H6O3). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Conditions for the formation of rare earth element (Y, La–Lu) 3-methylglutarates were studied and their quantitative composition and solubilities in water at 293 K were determined (10–2 mol dm–3). The IR spectra of the prepared complexes with general formula Ln2(C6H8O4)3 nH2O (n=3–8) were recorded and their thermal decomposition in the air were investigated. During heating the hydrated 3-methylglutarates are dehydrated in one step and next anhydrous complexes decompose to oxides Ln2O3 with intermediate formation Ln2O2CO3 (Y, La, Nd–Gd) or directly to the oxides, Ln2O3, CeO2, Pr6O11 and Tb4O7 (Ce, Pr, Tb–Lu). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
4-Chloro-2-methoxybenzoates of heavy lanthanides(III) and yttrium(III) were obtained as mono-, di-, tri-or tetrahydrates with metal to ligand ratio of 1:3 and general formula Ln(C8H6ClO3)3·nH2O, where n=1 for Ln=Er, n=2 for Ln=Tb, Dy, Tm, Y, n=3 for Ln=Ho and n=4 for Yb and Lu. The complexes were characterized by elemental analysis, FTIR spectra, TG, DTA and DSC curves, X-ray diffraction and magnetic measurements. The carboxylate group appears to be a symmetrical bidentate chelating ligand. All complexes are polycrystalline compounds. The values of enthalpy, ΔH, of the dehydration process for analysed complexes were also determined. The solubilities of heavy lanthanide(III) 4-chloro-2-methoxybenzoates in water at 293 K are of the order of 10−4 mol dm−3. The magnetic moments were determined over the range of 76–303 K. The results indicate that there is no influence of the ligand field of 4f electrons on lanthanide ions and the metal ligand bonding is mainly electrostatic in nature.  相似文献   

4.
The rare earth element 2,4,6-trimethylbenzoates were prepared as solids with the general formula Ln(C10 H11 O2 )3 ×n H2 O, where n =2 for Ln =Y, La–Nd, and n =1 for Ln =Sm–Lu. The IR spectra of the complexes prepared were recorded and their solubilities in water and thermal decomposition in the air were investigated. During heating the hydrated complexes lose all the crystallization water molecules in one (Y, Ce–Lu) or two steps (La) and then the anhydrous complexes decompose either directly to oxides (Y, Ce, Pr, Sm–Lu) or with intermediate formation oxocarbonates Ln2 O2 CO3 (La, Nd). The carboxylate groups in the complexes prepared act probably as mono- and bidentate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Rare earth element 3-methyladipates were prepared as crystalline solids with general formula Ln2(C7H10O4)3nH2O, where n=6 for La, n=4 for Ce,Sm–Lu, n=5 for Pr, Nd and n=5.5 for Y. Their solubilities in water at 293 K were determined (2⋅10–3–1.5⋅10–4 mol dm–3). The IR spectra of the prepared complexes suggest that the carboxylate groups are bidentate chelating. During heating the hydrated 3-methyladipates lose all crystallization water molecules in one (Ce–Lu) or two steps (Y) (except of La(III) complex which undergoes tomonohydrate) and then decompose directly to oxides (Y, Ce) or with intermediate formation of oxocarbonates Ln2O2CO3 (Pr–Tb) or Ln2O(CO3)2 (Gd–Lu). Only La(III) complex decomposes in four steps forming additionally unstable La2(C7H10O4)(CO3)2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Summary Complexes of heavy lanthanide(III) (Gd-Lu) and Y(III) with 4-chlorophthalic acid were prepared and their IR spectra, solubility in water at 295 K and thermal decomposition were investigated. When heated the complexes with general formula Ln2[ClC6H3(CO2)2]3·nH2O where n=6 for Tb, Dy(III), n=4 for Gd, Ho and Er(III), n=2 for Tm-Lu(III) and n=3 for Y(III) decompose to the oxides Ln2O3, Tb4O7 with intermediate formation of oxochlorides LnOCl.  相似文献   

7.
4-Chloro-2-methoxybenzoates of light lanthanides(III) were obtained as mono-, di-or trihydrates with metal to ligand ratio of 1:3 and general formula Ln(C8H6ClO3)3·nH2O, where n=1 for Ln=Ce, Pr, n=2 for Ln=Nd, Sm, Eu, Gd and n=3 for Ln=La. The complexes were characterized by elemental analysis, IR spectra, thermogravimetric studies, X-ray diffraction and magnetic measurements. The carboxylate group appears to be a symmetrical bidentate, chelating ligand. All complexes seem polycrystalline compounds. Their thermal stabilities were determined in air. When heated they dehydrate to form anhydrous salts which next are decomposed to the oxides of the respective metals. The solubilities of light lanthanide(III) 4-chloro-2-methoxybenzoates in water at 293 K are of the order of 10−5 mol dm−3. The magnetic moments were determined over the range of 77–300 K. They obey the Curie-Weiss law. The values of μeff calculated for all compounds are close to those obtained for Ln3+ by Hund and Van Vleck. The results indicate that there is no influence of the ligand field of 4f electrons on lanthanide ions and the metal ligand bonding is mainly electrostatic in nature.  相似文献   

8.
Rare earth complexes with 2,2′-biphenyldicarboxylic acid (diphenic acid = H2dpa) were obtained as hydrated precipitates of the general formula Ln2(C14H8O4)3nH2O, where n = 3 for the of Y(III) and Ce(III)–Er(III) and n = 6 for La(III), Tm(III), Yb(III) and Lu(III) complexes. On heating in air atmosphere complexes lose all water molecules in the temperature range 30–210 °C in one step and form anhydrous compounds, which are stable up to 315–370 °C. During further heating they decompose to oxides. The trihydrated compounds are crystalline powders whereas the hexahydrated are amorphous solids. The trihydrated complexes crystallize in the monoclinic (Pr(III) and Ce(III) complexes) and triclinic (Y(III) and Nd(III)–Er(III) complexes) crystal systems.  相似文献   

9.
Solid-state compounds of general formula LnL3⋅nH2O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere. On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200°C occurs with the formation of the respective oxide, Tb4O7 and Ln2O3 (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol-1, respectively.  相似文献   

10.
Complexes of lanthanides(III) (La-Lu) and Y(III) with 3,4,5-trihydroxybenzoic acid (gallic acid) were obtained and their thermal decomposition, IR spectra and solubility in water have been investigated. When heated, the complexes with a general formula Ln(C7H5O5)(C7H4O5nH2O (n=2 for La-Ho and Y: n=0 for Er-Lu) lose their crystallization water and decompose to the oxides Ln2O3, CeO2, Pr6O11, and Tb4O7, except of lanthanum and neodymium complexes, which additionally form stable oxocarbonates such as Ln2O2CO3. The complexes are sparingly soluble in water (0.3·10–5–8.3·10–4 mol dm–3).This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
Summary p-Aminosalicylates of Y, La and lanthanides prepared in the reaction of the ammoniump-aminosalicylate and lanthanide chlorides in solutions have the general formulaLn(C7H6O3N)3·nH2O, wheren=3 for La, Ce;n=2 for Pr, Nd, Sm, Eu;n=0 for Y, Gd—Lu. Their solubilities in water are of the order of 10–3 mol dm–3. Heating above 350–450 K leads to dehydration and decomposition at the same time. The IR and X-ray spectra for the obtained complexes were recorded. It was found that only complexes of La—Nd are crystalline compounds. The way of metal-ligand coordination is discussed.
Darstellung und Charakterisierung der Komplexe von Seltenen Erdmetallen mitp-Aminosalicylsäure
Zusammenfassung Zur Darstellung der Verbindungen des TypsLn(C7H6O3N)3·nH2O (mitn=3 für La, Ce;n=2 für Pr, Nd, Sm, Eu;n=0 für Y, Gd—Lu) wurde die berechnete Menge von Ammonium-p-aminosalicylat undLnCl3-Lösungen beipH5.8 gemischt und zur Kristallisation gebracht. Ihre Wasserlöslichkeit bei 298 K ist in der Größenordnung 10–3 mol dm–3. Beim Erhitzen erfolgt bei 350–450 K Entwässerung und Zersetzung zugleich. Die Infrarot- und Röntgenspektren der erhaltenen Komplexe wurden gemessen und dabei festgestellt, daß nur die La—Nd-Komplexe kristalline Verbindungen sind. Die Art der Koordination der Seltenerdmetalle mit den Liganden wird diskutiert.
  相似文献   

12.
The complexes of yttrium(III) and lanthanides(III) with 5-amino-1,3-benzenedicarboxylic acid form two isostructural series of compounds and have the general formula Ln2(C8H5O4N)3·nH2O, where n = 13 for Y, La-Er and n=9 for Tm, Yb, Lu. They are insoluble in water and stable at room temperature. On heating in air or inert gas atmosphere they lose all water molecules in several steps. The anhydrous compounds are stable to about 400°C and next decompose to oxides.  相似文献   

13.
Reactions of the isopropoxides of some of the lighter lanthanons with bidentate -ketoimines, such asAAH-n-C4H9 andAAH-C6H5 (donor system: N,OH) and tridentate -ketoimines such asAA(CH2CH2)H2 andAA(CH2CHCH3)H2 (donor system: HO,N.OH) have led to products of the typesLn(O-i-C3H7)3n (AA-R) n ,Ln(Oi-C3H7) (AAR') andLn 2(AAR')3 [Ln=La(III), Pr(III) or Nd(III);n=1 or 2;R=-n-C4H9 or-C6H5 andR'=-CH2CH2-or-CH2CHCH3-]. Some undergo exchange reactions with an excess oftert-butanol, leading to the corresponding complexesLn(O-tert-C4H9)3n (AA-n-C4H9) n andLn(O-tert-C4H9) (AA-CH2CH2). All these have been characterised by elemental analysis, molecular weight determinations and their ir spectra. A thermogravimetric analysis of the diisopropoxy derivatives has also been carried out.
Schiff-Basen Derivate von Lanthaniden-Synthese von La(III), Pr(III) und Nd(III) chelaten mit -Ketoiminen
Zusammenfassung Reaktionen von Lanthanid-Isopropoxiden mit zweizähnigen -Ketoiminen [AAH-n-C4H9 undAAH-C6H5; Donorsystem: N,OH] und dreizähnigen -Ketoiminen [AA(CH2CH2)H2 undAA(CH2CHCH3)H2; Donorsystem: OH, N,OH] führten zu Produkten vom, TypLn(O-i-C3H7)3-n (AA-R) n ,Ln(O-i-C3H7) (AAR') undLn 2(AAR')3 [Ln=La(III), Pr(III) oder Nd(III);n=1 oder 2;R=n-C4H9 oder C6H5 undR'=CH2CH2 oder CH2CHCH3]. Einige Komplexe unterliegen bei Behandlung mit einem Überschuß vontert-Butanol einer Austauschreaktion, die zu den entsprechenden Butoxid-Komplexen führt [Ln(O-tert-C4H9)3-n , (AA-n-C4H9) n undLn(O-tert-C4H9) (AACH2CH2)]. Alle Derivate wurden mittels Elementaranalyse, Molgewichtsbestimmung und IR-Spektroskopie charakterisiert. Eine thermogravimetrische Analyse der Diisopropoxi-Derivate wurde ebenfalls ausgeführt.
  相似文献   

14.
Oxalates of La(III), Ce(III), Pr(III), Nd(III) and Sm(III) with the hydrazinium cation with the general formulae (N2H5)4Ln2(C2O4)57H2O (Ln=La3+, Ce3+, Pr3+) and N2H5Ln(C2O4)2·3.5H2O (Ln=Nd3+, Sm3+) were synthesized. The thermal decompositions of these compounds take place in three stages: thermal dehydration at 65–100°C, exothermic decomposition of the N2H4 at 230–260°C, and oxidation of the oxalate ion.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
Pyridine-2,5-dicarboxylic acid, known as isocinchomeric acid is one of six isomers containing two carboxylic groups. Light lanthanide (III) complexes with pyridine-2,5-dicarboxylic acid with general formula Ln2L3·nH2O, where n = 8, 9, were obtained. Their thermal and spectroscopic properties were studied. Sodium salt was obtained as Na2L·H2O. Hydrated complexes of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III) are stable to 313–333 K, whereas Na2L·H2O is stable to about 333 K. Dehydration process for all compounds runs in one stage, next they decompose into appropriate lanthanide oxalates, oxocarbonates carbonates and finally to metal oxides. Bands of νCOOH vibrations at 1736 and 1728 cm−1 disappear on complex spectra and νas and νs of COO groups appear thus indicating that complexation process took place.  相似文献   

16.
The complexes of yttrium and lanthanide with 1,1-cyclobutanedicarboxylic acid of the formula: Ln2(C6H6O4)3nH2O, where n=4 for Y, Pr–Tm, n=5 for Yb,Lu, n=7 for La, Ce have been studied. The solid complexes have colours typical of Ln3+ ions. During heating in air they lose water molecules and then decompose to the oxides, directly (Y, Ce, Tm, Yb) or with intermediate formation. The thermal decomposition is connected with released water (313–353 K), carbon dioxide, hydrocarbons(538–598 K) and carbon oxide for Ho and Lu. When heated in nitrogen they dehydrate to form anhydrous salt and next decompose to the mixture of carbon and oxides of respective metals. IR spectra of the prepared complexes suggest that the carboxylate groups are bidentate chelating. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Double oxalates of rare earths(III) and rubidium with the general formulae RbCe(C2O4)2 4.5H2O, RbLn(C2O4)24H2O (Ln=Yb, Lu), RbLn(C2O4)2·3.5H2O (Ln=La, Pr-Dy), and RbLn(C2O4)2·3H2O (Ln=Ho, Er, Tm, Y) were synthesized. They were characterized by chemical analysis, TG, DTG and DSC over the temperature interval 20–500C and X-ray powder diffraction examination. At the chosen final temperature (500C), either oxide (Ln2O3) or basic carbonate Ln2O2CO3) and Rb2CO3 were obtained, depending on the rare earth(III) element. On the basis of the X-ray diffraction patterns, the isolated compounds can be divided into five isostructural groups.  相似文献   

18.
The complexes of rare earth elements with 2,3-naphthalenedicarboxylic acid of the formula: Ln2(C12H6O4)3·nH2O, where Ln = La(III)-Lu(III) and Y(III); n = 3 for La(III), Ce(III); n = 6 for Pr(III)-Yb(III) and Y(III) and n = 5 for Lu(III) have been synthesized and characterized by elemental analysis, IR spectroscopy, thermal analysis (TG, DTG, DTA and TG-FTIR) and X-ray analysis. They are sparingly soluble in water and stable at room temperature. During heating in air atmosphere, they lose all water molecules in several steps, generally in two or three steps, except for the La(III) and Ce(III) complexes which lose all water molecules in one step. The anhydrous compounds are stable up to about 773 K and then decompose to corresponding oxides. The thermal decomposition is connected with the release of water molecules (443 K), carbon dioxide (713 K) and hydrocarbons.  相似文献   

19.
The thermal dehydration-decomposition of Ln2(SeO4)3·nH2O (wheren=12 forLn=Pr, Nd andn=8 forLn=Sm) and PrxLn2−x(SeO4)3·nH2O (wheren=12 forx=1.0 andLn=Nd;n=8 forx=0.2 and 1.0 in case ofLn=Sm) have been reported.
Zusammenfassung Die thermische Dehydratation-Zersetzung von Ln2(SeO4)3·nH2O (mitn=12 fürLn=Pr, Nd undn=8 fürLn=Sm) und PrxLn2−x(SeO4)3·nH2O (mitn=12 fürx=1.0 undLn=Nd;n=8 fürx=0.2 und 1.0 in Falle vonLn=Sm) wurde beschrieben.
  相似文献   

20.
Hydrated lanthanide picrates with a composition of: Ln(pic)3xH2O (Ln=La–Lu, Y) were synthesized and characterized. Thermal decomposition of the picrates by TG/DTG and DSC techniques are reported. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号