首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
3.
4.
5.
6.
Until recently, tertiary phosphanes, arsanes, and stibanes were considered to bind to transition-metal centers only in a terminal coordination mode. Investigations on the reactivity of square-planar trans-[RhCl(=CRR')(L)(2)] compounds revealed that compounds in which L=SbiPr(3) can be converted upon heating into dinuclear complexes [Rh(2)Cl(2)(micro-CRR')(2)(micro-SbiPr(3))] with the carbene and stibane ligands in bridging positions. Although attempts to replace the stibane in these complexes with a tertiary arsane or phosphane failed, substitution of the chloro ligands for acetylacetonates followed by bridge-ligand exchange allowed the preparation of the phosphane- and arsane-bridged compounds [Rh(2)(acac)(2)(micro-CRR')(2)(micro-PR(3))] and [Rh(2)(acac)(2)(micro-CRR')(2)(micro-AsMe(3))]. The acac ligands can be replaced by anionic Lewis bases to give either monomeric [Rh(2)X(2)(micro-CRR')(2)(micro-ER(3))] or dimeric chain-like [XRh(micro-CRR')(2)(micro-ER(3))Rh(micro-X)(2)Rh(micro-CRR')(2)(micro-ER(3))RhX] molecules.  相似文献   

7.
8.
9.
10.
11.
Evaluation of the acidity of proton‐responsive ligands such as protic N‐heterocyclic carbenes (NHCs) bearing an NH‐wingtip provides a key to understanding the metal–ligand cooperation in enzymatic and artificial catalysis. Here, we design a CNN pincer‐type ruthenium complex 2 bearing protic NHC and isoelectronic pyrazole units in a symmetrical skeleton, to compare their acidities and electron‐donating abilities. The synthesis is achieved by direct C?H metalation of 2‐(imidazol‐1‐yl)‐6‐(pyrazol‐3‐yl)pyridine with [RuCl2(PPh3)3]. 15N‐Labeling experiments confirm that deprotonation of 2 occurs first at the pyrazole side, indicating clearly that the protic pyrazole is more acidic than the NHC group. The electrochemical measurements as well as derivatization to carbonyl complexes demonstrate that the protic NHC is more electron‐donating than pyrazole in both protonated and deprotonated forms.  相似文献   

12.
13.
14.
15.
16.
We report the uranium(VI) carbene imido oxo complex [U(BIPMTMS)(NMes)(O)(DMAP)2] ( 5 , BIPMTMS=C(PPh2NSiMe3)2; Mes=2,4,6‐Me3C6H2; DMAP=4‐(dimethylamino)pyridine) which exhibits the unprecedented arrangement of three formal multiply bonded ligands to one metal center where the coordinated heteroatoms derive from different element groups. This complex was prepared by incorporation of carbene, imido, and then oxo groups at the uranium center by salt elimination, protonolysis, and two‐electron oxidation, respectively. The oxo and imido groups adopt axial positions in a T‐shaped motif with respect to the carbene, which is consistent with an inverse trans‐influence. Complex 5 reacts with tert‐butylisocyanate at the imido rather than carbene group to afford the uranyl(VI) carbene complex [U(BIPMTMS)(O)2(DMAP)2] ( 6 ).  相似文献   

17.
The reactions of the hydrido-triruthenium cluster complex [Ru3(mu-H)(mu3-kappa(2)-HNNMe2)(CO)9] (1; H2NNMe2 = 1,1-dimethylhydrazine) with alkynes that have alpha-hydrogen atoms give trinuclear derivatives containing edge-bridging allyl or face-capping alkenyl ligands. Under mild conditions (THF, 70 degrees C) the isolated products are as follows: [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-1-syn-Me-3-anti-EtC3H3)(mu-CO)2(CO)6] (2) and [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-1-syn-Me-3-syn-EtC3H3)(mu-CO)2(CO)6] (3) from 3-hexyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-3-anti-PhC3H4)(mu-CO)2(CO)6] (4), [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-MeCCHPh)(mu-CO)2(CO)6] (5) and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-PhCCHMe)(mu-CO)2(CO)6] (6) from 1-phenyl-1-propyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-3-anti-PrC3H4)(mu-CO)2(CO)6] (7), [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-BuCCH2)(mu-CO)2(CO)6] (8), and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-HCCHBu)(mu-CO)2(CO)6] (9) from 1-hexyne; [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-HOH2CCCH2)(mu-CO)2(CO)6] (10) from propargyl alcohol; and [Ru3(mu3-kappa(2)-HNNMe2)(mu3-kappa(2)-MeOCH2CCH2)(mu-CO)2(CO)6] (11) from 3-methoxy-1-propyne. The regioselectivity of these reactions depends upon the nature of the alkyne reagent, which affects considerably the kinetic barriers of important reaction steps and the stability of the final products. It has been established that the face-capped alkenyl derivatives are not precursors to the allyl products, which are formed via edge-bridged alkenyl intermediates. At higher temperature (toluene, 110 degrees C), the complexes that have allyl ligands with an anti substituent are isomerized into allyl derivatives with that substituent in the syn position, for example, 4 into [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(3)-3-syn-PhC3H4)(mu-CO)2(CO)6] (14). The diene complex [Ru3(mu-H)(mu3-kappa(2)-HNNMe2)(mu-kappa(4)-trans-EtC4H5)(CO)7] (13) has been obtained from the thermolysis of compounds 2 and 7 at 110 degrees C (3 and [Ru3(mu3-kappa(2)-HNNMe2)(mu-kappa(2)-3-syn-PrC3H4)(mu-CO)2(CO)6] (12) are also formed in these reactions). A DFT theoretical study has allowed a comparison of the thermodynamic stabilities of isomeric compounds and has helped rationalize the experimental results. Mechanistic proposals for the synthesis of the allyl complexes and their isomerization processes are also provided.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号