首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Let G be an infinite graph; define deg∞ G to be the least m such that any partition P of the vertex set of G into sets of uniformly bounded cardinality contains a set which is adjacent to at least m other sets of the partition. If G is either a regular tree on a triangular, square or hexagonal planar mosaic graph, it is shown that deg∞ G equals the degree of G. This verifies some conjectures of S. Ulam. Several open problems are given.  相似文献   

2.
We consider the existence of Hamiltonian cycles for the locally connected graphs with a bounded vertex degree. For a graph G, let Δ(G) and δ(G) denote the maximum and minimum vertex degrees, respectively. We explicitly describe all connected, locally connected graphs with Δ(G)?4. We show that every connected, locally connected graph with Δ(G)=5 and δ(G)?3 is fully cycle extendable which extends the results of Kikust [P.B. Kikust, The existence of the Hamiltonian circuit in a regular graph of degree 5, Latvian Math. Annual 16 (1975) 33-38] and Hendry [G.R.T. Hendry, A strengthening of Kikust’s theorem, J. Graph Theory 13 (1989) 257-260] on full cycle extendability of the connected, locally connected graphs with the maximum vertex degree bounded by 5. Furthermore, we prove that problem Hamilton Cycle for the locally connected graphs with Δ(G)?7 is NP-complete.  相似文献   

3.
Chung defined a pebbling move on a graph G to be the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number of a connected graph is the smallest number f(G) such that any distribution of f(G) pebbles on G allows one pebble to be moved to any specified, but arbitrary vertex by a sequence of pebbling moves. Graham conjectured that for any connected graphs G and H, f(G×H)≤ f(G)f(H). We prove Graham's conjecture when G is a cycle for a variety of graphs H, including all cycles. © 2002 Wiley Periodicals, Inc. J Graph Theory 42: 141–154, 2003  相似文献   

4.
Suppose that G, H are infinite graphs and there is a bijection Ψ; V(G) Ψ V(H) such that G - ξ ? H - Ψ(ξ) for every ξ ~ V(G). Let J be a finite graph and /(π) be a cardinal number for each π ? V(J). Suppose also that either /(π) is infinite for every π ? V(J) or J has a connected subgraph C such that /(π) is finite for every π ? V(C) and every vertex in V(J)/V(C) is adjacent to a vertex of C. Let (J, I, G) be the set of those subgraphs of G that are isomorphic to J under isomorphisms that map each vertex π of J to a vertex whose valency in G is /(π). We prove that the sets (J, I, G), m(J, I, H) have the same cardinality and include equal numbers of induced subgraphs of G, H respectively.  相似文献   

5.
Pebbling numbers of some graphs   总被引:1,自引:0,他引:1  
Chung defined a pebbling move on a graphG as the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The pebbling number of a connected graphG, f(G), is the leastn such that any distribution ofn pebbles onG allows one pebble to be moved to any specified but arbitrary vertex by a sequence of pebbling moves. Graham conjectured that for any connected graphsG andH, f(G xH) ≤ f(G)f(H). In the present paper the pebbling numbers of the product of two fan graphs and the product of two wheel graphs are computed. As a corollary, Graham’s conjecture holds whenG andH are fan graphs or wheel graphs.  相似文献   

6.
Nash‐Williams conjectured that a 4‐connected infinite planar graph contains a spanning 2‐way infinite path if, and only if, the deletion of any finite set of vertices results in at most two infinite components. In this article, we prove this conjecture for graphs with no dividing cycles and for graphs with infinitely many vertex disjoint dividing cycles. A cycle in an infinite plane graph is called dividing if both regions of the plane bounded by this cycle contain infinitely many vertices of the graph. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 173–195, 2006  相似文献   

7.
A (finite or infinite) graph G is retract-collapsible if it can be dismantled by deleting systematically at each step every vertex that is strictly dominated, in such a way that the remaining subgraph is a retract of G, and so as to get a simplex at the end. A graph is subretract-collapsible if some graph obtained by planting some rayless tree at each of its vertices is retract-collapsible. It is shown that the subretract-colapsible graphs are cop-win; and that a ball-Helly graph is subretract-collapsible if and only if it has no isometric infinite paths (thus in particular if it has no infinite paths, or if it is bounded). Several fixed subgraph properties are proved. In particular, if G is a subretract-collapsible graph, and f a contraction from G into G, then (i) if G has no infinite simplices, then f(S) = S for some simplex S of G; and (ii) if the dismantling of G can be achieved in a finite number of steps and if some family of simplices of G has a compacity property, then there is a simplex S of G such that f(S) ? S. This last result generalizes a property of bounded ball-Helly graphs. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
A vertex distinguishing edge coloring of a graph G is a proper edge coloring of G such that any pair of vertices has the distinct sets of colors. The minimum number of colors required for a vertex distinguishing edge coloring of a graph G is denoted by ???? s (G). In this paper, we obtained upper bounds on the vertex distinguishing chromatic index of 3-regular Halin graphs and Halin graphs with ??(G) ?? 4, respectively.  相似文献   

9.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

10.
We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel and Kühn [4, 5], which allows for infinite cycles, we prove that the edge set of a locally finite graph G lies in C(G) if and only if every vertex and every end has even degree. In the same way we generalise to locally finite graphs the characterisation of the cycles in a finite graph as its 2-regular connected subgraphs.  相似文献   

11.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

12.
A face of a vertex coloured plane graph is called loose if the number of colours used on its vertices is at least three. The looseness of a plane graph G is the minimum k such that any surjective k-colouring involves a loose face. In this paper we prove that the looseness of a connected plane graph G equals the maximum number of vertex disjoint cycles in the dual graph G* increased by 2. We also show upper bounds on the looseness of graphs based on the number of vertices, the edge connectivity, and the girth of the dual graphs. These bounds improve the result of Negami for the looseness of plane triangulations. We also present infinite classes of graphs where the equalities are attained.  相似文献   

13.
A friendship graph is a graph in which every two distinct vertices have exactly one common neighbor. All finite friendship graphs are known, each of them consists of triangles having a common vertex. We extend friendship graphs to two-graphs, a two-graph being an ordered pair G = (G 0, G 1) of edge-disjoint graphs G 0 and G 1 on the same vertex-set V(G 0) = V(G 1). One may think that the edges of G are colored with colors 0 and 1. In a friendship two-graph, every unordered pair of distinct vertices u, v is connected by a unique bicolored 2-path. The pairs of adjacency matrices of friendship two-graphs are solutions to the matrix equation AB + BA = JI, where A and B are n × n symmetric 0 − 1 matrices, J is an n × n matrix with every entry being 1, and I is the identity n × n matrix. We show that there is no finite friendship two-graph with minimum vertex degree at most two. However, we construct an infinite such graph, and this construction can be extended to an infinite (uncountable) family. Also, we find a finite friendship two-graph, conjecture that it is unique, and prove this conjecture for the two-graphs that have a dominating vertex.  相似文献   

14.
A graph G is 1‐Hamilton‐connected if G?x is Hamilton‐connected for every xV(G), and G is 2‐edge‐Hamilton‐connected if the graph G+ X has a hamiltonian cycle containing all edges of X for any X?E+(G) = {xy| x, yV(G)} with 1≤|X|≤2. We prove that Thomassen's conjecture (every 4‐connected line graph is hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the statements that every 4‐connected line graph is 1‐Hamilton‐connected and/or 2‐edge‐Hamilton‐connected. As a corollary, we obtain that Thomassen's conjecture implies polynomiality of both 1‐Hamilton‐connectedness and 2‐edge‐Hamilton‐connectedness in line graphs. Consequently, proving that 1‐Hamilton‐connectedness is NP‐complete in line graphs would disprove Thomassen's conjecture, unless P = NP. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 241–250, 2012  相似文献   

15.
A graph is well covered if every maximal independent set has the same cardinality. A vertex x, in a well-covered graph G, is called extendable if G – {x} is well covered and β(G) = β(G – {x}). If G is a connected, well-covered graph containing no 4- nor 5-cycles as subgraphs and G contains an extendable vertex, then G is the disjoint union of edges and triangles together with a restricted set of edges joining extendable vertices. There are only 3 other connected, well-covered graphs of this type that do not contain an extendable vertex. Moreover, all these graphs can be recognized in polynomial time.  相似文献   

16.
With the help of the Graffiti system, Fajtlowicz conjectured around 1992 that the average distance between two vertices of a connected graph G is at most half the maximum order of an induced bipartite subgraph of G, denoted α2(G). We prove a strengthening of this conjecture by showing that the average distance between two vertices of a connected graph G is at most half the maximum order of an induced forest, denoted F(G). Moreover, we characterize the graphs maximizing the average distance among all graphs G having a fixed number of vertices and a fixed value of F(G) or α2(G). Finally, we conjecture that the average distance between two vertices of a connected graph is at most half the maximum order of an induced linear forest (where a linear forest is a union of paths). © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 31–54, 2009  相似文献   

17.
Almost all Cayley graphs are hamiltonian   总被引:3,自引:0,他引:3  
It has been conjectured that there is a hamiltonian cycle in every finite connected Cayley graph. In spite of the difficulty in proving this conjecture, we show that almost all Cayley graphs are hamiltonian. That is, as the order n of a groupG approaches infinity, the ratio of the number of hamiltonian Cayley graphs ofG to the total number of Cayley graphs ofG approaches 1.Supported by the National Natural Science Foundation of China, Xinjiang Educational Committee and Xinjiang University.  相似文献   

18.
A topology on the vertex set of a graphG iscompatible with the graph if every induced subgraph ofG is connected if and only if its vertex set is topologically connected. In the case of locally finite graphs with a finite number of components, it was shown in [11] that a compatible topology exists if and only if the graph is a comparability graph and that all such topologies are Alexandroff. The main results of Section 1 extend these results to a much wider class of graphs. In Section 2, we obtain sufficient conditions on a graph under which all the compatible topologies are Alexandroff and in the case of bipartite graphs we show that this condition is also necessary.  相似文献   

19.
Even graphs     
A nontrivial connected graph G is called even if for each vertex v of G there is a unique vertex v such that d(v, v ) = diam G. Special classes of even graphs are defined and compared to each other. In particular, an even graph G is called symmetric if d(u, v) + d(u, v ) = diam G for all u, vV(G). Several properties of even and symmetric even graphs are stated. For an even graph of order n and diameter d other than an even cycle it is shown that n ≥ 3d – 1 and conjectured that n ≥ 4d – 4. This conjecture is proved for symmetric even graphs and it is shown that for each pair of integers n, d with n even, d ≥ 2 and n ≥ 4d – 4 there exists an even graph of order n and diameter d. Several ways of constructing new even graphs from known ones are presented.  相似文献   

20.
A graph G is perfect in the sense of Berge if for every induced subgraph G′ of G, the chromatic number χ(G′) equals the largest number ω(G′) of pairwise adjacent vertices in G′. The Strong Perfect Graph Conjecture asserts that a graph G is perfect if, and only if, neither G nor its complement ? contains an odd chordless cycle of length at least five. We prove that the conjecture is true for a class of P5-free graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号