首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let \(M = {{\widetilde M} \mathord{\left/ {\vphantom {{\widetilde M} \Gamma }} \right. \kern-\nulldelimiterspace} \Gamma }\) be a Kähler manifold, where Γ ~ π1(M) and \(\widetilde M\) is the universal Kähler cover. Let (L, h) → M be a positive hermitian holomorphic line bundle. We first prove that the L2 Szeg? projector \({\widetilde \Pi _N}\) for L2-holomorphic sections on the lifted bundle \({\widetilde L^N}\) is related to the Szeg? projector for H0(M, LN) by \({\widehat \Pi _N}\left( {x,y} \right) = \sum\nolimits_{\gamma \in \Gamma } {{{\widetilde {\widehat \Pi }}_N}} \left( {\gamma \cdot x,y} \right)\). We then apply this result to give a simple proof of Napier’s theorem on the holomorphic convexity of \(\widetilde M\) with respect to \({\widetilde L^N}\) and to surjectivity of Poincaré series.  相似文献   

2.
Let Ω be an open, simply connected, and bounded region in \(\mathbb {R}^{d}\), d ≥ 2, and assume its boundary ?Ω is smooth and homeomorphic to \(\mathbb {S}^{d-1}\). Consider solving an elliptic partial differential equation L u = f(?, u) over Ω with zero Dirichlet boundary value. The function f is a nonlinear function of the solution u. The problem is converted to an equivalent elliptic problem over the open unit ball \(\mathbb {B}^{d}\) in \(\mathbb {R}^{d}\), say \(\widetilde {L}\widetilde {u} =\widetilde {f}(\cdot ,\widetilde {u})\). Then a spectral Galerkin method is used to create a convergent sequence of multivariate polynomials \(\widetilde {u} _{n}\) of degree ≤ n that is convergent to \(\widetilde {u}\). The transformation from Ω to \(\mathbb {B}^{d}\) requires a special analytical calculation for its implementation. With sufficiently smooth problem parameters, the method is shown to be rapidly convergent. For \(u\in C^{\infty } \left (\overline {\Omega }\right ) \) and assuming ?Ω is a C boundary, the convergence of \(\left \Vert \widetilde {u} -\widetilde {u}_{n}\right \Vert _{H^{1}}\) to zero is faster than any power of 1/n. The error analysis uses a reformulation of the boundary value problem as an integral equation, and then it uses tools from nonlinear integral equations to analyze the numerical method. Numerical examples illustrate experimentally an exponential rate of convergence. A generalization to ?Δu + γ u = f(u) with a zero Neumann boundary condition is also presented.  相似文献   

3.
This paper is concerned with the existence of positive solutions of the third-order boundary value problem with full nonlinearity
$$\begin{aligned} \left\{ \begin{array}{lll} u'''(t)&{}=f(t,u(t),u'(t),u''(t)),\quad t\in [0,1],\\ u(0)&{}=u'(1)=u''(1)=0, \end{array}\right. \end{aligned}$$
where \(f:[0,1]\times \mathbb {R}^+\times \mathbb {R}^+\times \mathbb {R}^-\rightarrow \mathbb {R}^+\) is continuous. Under some inequality conditions on f as |(xyz)| small or large enough, the existence results of positive solution are obtained. These inequality conditions allow that f(txyz) may be superlinear, sublinear or asymptotically linear on x, y and z as \(|(x,y,z)|\rightarrow 0\) and \(|(x,y,z)|\rightarrow \infty \). For the superlinear case as \(|(x,y,z)|\rightarrow \infty \), a Nagumo-type growth condition is presented to restrict the growth of f on y and z. Our discussion is based on the fixed point index theory in cones.
  相似文献   

4.
Let \(A=U|A|\) be the polar decomposition of A on a complex Hilbert space \({\mathscr {H}}\) and \(0<s,t\). Then \({\widetilde{A}}_{s, t}=|A|^sU|A|^t\) and \({\widetilde{A}}_{s, t}^{(*)}=|A^*|^sU|A^*|^t\) are called the generalized Aluthge transformation and generalized \(*\)-Aluthge transformation of A, respectively. A pair (AB) of operators is said to have the Fuglede–Putnam property (breifly, the FP-property) if \(AX=XB\) implies \(A^*X=XB^*\) for every operator X. We prove that if (AB) has the FP-property, then \(({\widetilde{A}}_{s, t},{\widetilde{B}}_{s, t})\) and \((({\widetilde{A}}_{s, t})^{*},({\widetilde{B}}_{s, t})^{*})\) has the FP-property for every \(s,t>0\) with \(s+t=1\). Also, we prove that \(({\widetilde{A}}_{s, t},{\widetilde{B}}_{s, t})\) has the FP-property if and only if \((({\widetilde{A}}_{s, t})^{*},({\widetilde{B}}_{s, t})^{*})\) has the FP-property, where AB are invertible and \( 0 < s, t \) with \( s + t =1\). Moreover, we prove that if \(0 < s, t\) and \({\widetilde{A}}_{s, t}\) is positive and invertible, then \(\left\| {\widetilde{A}}_{s, t}X-X{\widetilde{A}}_{s, t}\right\| \le \left\| A\right\| ^{2t}\left\| ({\widetilde{A}}_{s, t})^{-1}\right\| \left\| X\right\| \) for every operator X. Also, if \( 0 <s, t\) and X is positive, then \(\left\| |{\widetilde{A}}_{s, t}|^{2r} X-X|{\widetilde{A}}_{s, t}|^{2r}\right\| \le \frac{1}{2}\left\| |A|\right\| ^{2r}\left\| X\right\| \) for every \(r>0\).  相似文献   

5.
We solve the problem of describing the solutions of E-operators of order μ ≥ 1 admitting at z = 0 a basis over C of local solutions which are all holomorphic at z = 0. We prove that the components of such a basis can be taken of the form \(\sum {_{j = 1}^\ell } {P_j}\left( z \right){e^{{\beta _{{j^z}}}}}\), where ? ≤ μ, β 1,...,β ?\(\overline {\mathbb{Q}} \) x, and P 1(z),..., P ?(z) ∈ \(\overline {\mathbb{Q}} \)[z].  相似文献   

6.
Let YX be a finite normal cover of a wedge of n ≥ 3 circles. We prove that for any nonzero vH 1(Y; Q) there exists a lift \(\widetilde F\) to Y of a basepoint-preserving homotopy equivalence F: XX such that the set of iterates \(\left\{ {{{\widetilde F}^d}\left( v \right)} \right\}:d \in \mathbb{Z} \subseteq {H_1}\left( {Y,\mathbb{Q}} \right)\) is infinite. The main achievement of this paper is the use of representation theory to prove the existence of a purely topological object that seems to be inaccessible via topology.  相似文献   

7.
For p, q > 0 we study operators T on the Bergman space \({A_{2}(\mathbb{D)}}\) in the disk such that \({\left(\sum_{j}\Vert T\Delta_{j}\Vert_{p}^{q}\right)^{1/q}<\infty,}\) where the norms \({\Vert\cdot\Vert_{p}}\) are in the Schatten class S p (A 2), the projection \({\Delta_{j}f=\sum_{n\in I_{j}}a_{n}z^{n}}\) for \({f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}}\) and \({I_{j}=[2^{j}-1,2^{j+1} )\cap(\mathbb{N}\cup\{0\})}\) for \({j\in\mathbb{N}\cup\{0\}.}\) We consider the relation of this property with mixed norms of the Berezin transform of T and of the related function \({f_{T}(z)={\Vert}T(k_{z})\Vert}\) where k z is the normalized Bergman kernel. These classes of operators denoted by S(p, q) are closely related when assumed to be positive with other sets of operators, like the class of positive operators on A 2 for which \({\left(\sum_{j\geq0}(\sum_{n\in I_{j}}|\left\langle T^pe_{n},e_{n}\right\rangle |)^{q/p}\right)^{1/q}<\infty}\) , where \({\{e_{n}\}_{n\geq0}}\) is the canonical basis of A 2; also we study the relation of Toeplitz operators in S(p, q) with the Schatten-Herz classes, where the decomposition is through dyadic annuli of the domain \({\mathbb{D}}\) .  相似文献   

8.
For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \), the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.  相似文献   

9.
In terms of differential generators and differential relations for a finitely generated commutative- associative differential C-algebra A (with a unit element) we study and determine necessary and sufficient conditions for the fact that under any Taylor homomorphism \(\widetilde \psi \)M: A → C[[z]] the transcendence degree of the image \(\widetilde \psi \)M(A) over C does not exceed 1 \(\left( {\widetilde \psi M{{\left( a \right)}^{\underline{\underline {def}} }}\sum\limits_{m = 0}^\infty {\psi M\left( {{a^{\left( m \right)}}} \right)} } \right)\frac{{{z^m}}}{{m!}}\), where aA, M ∈ SpecCA is a maximal ideal in A, a(m) is the result of m-fold application of the signature derivation of the element a, and ψM is the canonic epimorphism AA/M).  相似文献   

10.
For any bounded domain Ω in ?m, let B1(Ω) denote the Cowen-Douglas class of commuting m-tuples of bounded linear operators. For an m-tuple T in the Cowen-Douglas class B1(Ω), let NT (w) denote the restriction of T to the subspace \(\cap^m_{i,j=1}{\rm{ker}}(T_i-w_iI)(T_j-w_jI)\). This commuting m-tuple NT (w) of m + 1 dimensional operators induces a homomorphism \({\rho _{{N_T}\left( w \right)}}\) of the polynomial ring P[z1, · · ·, zm], namely, \({\rho _{{N_T}\left( w \right)}}\) (p) = p(NT (w)), pP[z1, · · ·, zm]. We study the contractivity and complete contractivity of the homomorphism \({\rho _{{N_T}\left( w \right)}}\). Starting from the homomorphism \({\rho _{{N_T}\left( w \right)}}\), we construct a natural class of homomorphisms \(\rho_{N^{(\lambda)}(w)}\), λ > 0, and relate the properties of \(\rho_{N^{(\lambda)}(w)}\) to those of \({\rho _{{N_T}\left( w \right)}}\). Explicit examples arising from the multiplication operators on the Bergman space of Ω are investigated in detail. Finally, it is shown that contractive properties of \({\rho _{{N_T}\left( w \right)}}\) are equivalent to an inequality for the curvature of the Cowen-Douglas bundle ET. However, we construct examples to show that the contractivity of the homomorphism ρT does not follow, even if \({\rho _{{N_T}\left( w \right)}}\) is contractive for all w in Ω.  相似文献   

11.
Let J be the Lévy density of a symmetric Lévy process in \(\mathbb {R}^{d}\) with its Lévy exponent satisfying a weak lower scaling condition at infinity. Consider the non-symmetric and non-local operator
$$\mathcal{L}^{\kappa}f(x):= \lim_{{\varepsilon} \downarrow 0} {\int}_{\{z \in \mathbb{R}^{d}: |z|>{\varepsilon}\}} (f(x+z)-f(x))\kappa(x,z)J(z)\, dz\, , $$
where κ(x, z) is a Borel function on \(\mathbb {R}^{d}\times \mathbb {R}^{d}\) satisfying 0 < κ 0κ(x, z) ≤ κ 1, κ(x, z) = κ(x,?z) and |κ(x, z) ? κ(y, z)|≤ κ 2|x ? y| β for some β ∈ (0, 1]. We construct the heat kernel p κ (t, x, y) of \(\mathcal {L}^{\kappa }\), establish its upper bound as well as its fractional derivative and gradient estimates. Under an additional weak upper scaling condition at infinity, we also establish a lower bound for the heat kernel p κ .
  相似文献   

12.
For a local number field K with the ring of integers \( {\mathcal{O}_K} \), the residue field \( {\mathbb{F}_q} \), and uniformizing π, we consider the Lubin–Tate tower \( {K_\pi } = \bigcap\limits_{n \geqslant 0} {{K_n}} \), where K n = K(π n ), f(π0) = 0, and f(π n +1) = π n . Here f(X) defines the endomorphism [π] of the Lubin–Tate group. If q ≠ 2, then for any formal power series \( g(X) \in {\mathcal{O}_K}\left[ {\left[ X \right]} \right] \) the following equality holds: \( \sum\limits_{n = 0}^\infty {{\text{SP}}{{{K_n}} \mathord{\left/{\vphantom {{{K_n}} K}} \right.} K}} g\left( {{\pi_n}} \right) = - g(0) \). One has a similar equality in the case q = 2.  相似文献   

13.
We find the general form of solutions of the integral equation ∫k(t ? s)u1(s) ds = u2(t) of the convolution type for the pair of unknown functions u1 and u2 in the class of compactly supported continuously differentiable functions under the condition that the kernel k(t) has the Fourier transform \(\widetilde {{P_2}}\), where \(\widetilde {{P_1}}\) and \(\widetilde {{P_2}}\) are polynomials in the exponential eiτx, τ > 0, with coefficients polynomial in x. If the functions \({P_l}\left( x \right) = \widetilde {{P_l}}\left( {{e^{i\tau x}}} \right)\), l = 1, 2, have no common zeros, then the general solution in Fourier transforms has the form Ul(x) = Pl(x)R(x), l = 1, 2, where R(x) is the Fourier transform of an arbitrary compactly supported continuously differentiable function r(t).  相似文献   

14.
It is well known that the potential q of the Sturm–Liouville operator Ly = ?y? + q(x)y on the finite interval [0, π] can be uniquely reconstructed from the spectrum \(\left\{ {{\lambda _k}} \right\}_1^\infty \) and the normalizing numbers \(\left\{ {{\alpha _k}} \right\}_1^\infty \) of the operator LD with the Dirichlet conditions. For an arbitrary real-valued potential q lying in the Sobolev space \(W_2^\theta \left[ {0,\pi } \right],\theta > - 1\), we construct a function qN providing a 2N-approximation to the potential on the basis of the finite spectral data set \(\left\{ {{\lambda _k}} \right\}_1^N \cup \left\{ {{\alpha _k}} \right\}_1^N\). The main result is that, for arbitrary τ in the interval ?1 ≤ τ < θ, the estimate \({\left\| {q - \left. {{q_N}} \right\|} \right._\tau } \leqslant C{N^{\tau - \theta }}\) is true, where \({\left\| {\left. \cdot \right\|} \right._\tau }\) is the norm on the Sobolev space \(W_2^\tau \). The constant C depends solely on \({\left\| {\left. q \right\|} \right._\theta }\).  相似文献   

15.
We discuss three interrelated extremal problems on the set P n,m of algebraic polynomials of a given degree n on the unit sphere \(\mathbb{S}^{m - 1}\) of the Euclidean space ? m of dimension m ≥ 2. (1) Find the norm of the functional \(F\left( \eta \right) = F_h P_n = \int_{\mathbb{G}\left( \eta \right)} {P_n (x)dx}\), which is the integral over the spherical layer \(\mathbb{G}\left( \eta \right) = \left\{ {x = \left( {x_1 , \ldots ,x_m } \right) \in \mathbb{S}^{m - 1} :h' \leqslant x_m \leqslant h''} \right\}\) defined by a pair of real numbers η = (h′, h″), ?1 ≤ h′ < h″ ≤ 1, on the set P n,m with the norm of the space \(L\left( {\mathbb{S}^{m - 1} } \right)\) of functions summable on the sphere. (2) Find the best approximation in \(L_\infty \left( {\mathbb{S}^{m - 1} } \right)\) of the characteristic function χ η of the layer \(\mathbb{G}\left( \eta \right)\) by the subspace P n,m of functions from \(L_\infty \left( {\mathbb{S}^{m - 1} } \right)\) that are orthogonal to the space of polynomials P n,m . (3) Find the best approximation in the space \(L\left( {\mathbb{S}^{m - 1} } \right)\) of the function χ η by the space of polynomials P n,m . We present a solution of all three problems for the values h′ and h″ that are neighboring roots of the polynomial in a single variable of degree n + 1 that deviates least from zero in the space L 1 φ (?1, 1) of functions summable on the interval (?1, 1) with ultraspherical weight φ(t) = (1 ? t 2) α , α = (m ? 3)/2. We study the respective one-dimensional problems in the space of functions summable on (?1, 1) with an arbitrary not necessarily ultraspherical weight.  相似文献   

16.
The work is devoted to generalized Kloosterman sums modulo a prime, i.e., trigonometric sums of the form \(\sum\nolimits_{p \leqslant x} {\exp \left\{ {2\pi i\left( {a\bar p + {F_k}\left( p \right)} \right)/q} \right\}} \) and \(\sum\nolimits_{n \leqslant x} {\mu \left( n \right)\exp \left\{ {2\pi i\left( {a\bar n + {F_k}\left( n \right)} \right)/q} \right\}} \), where q is a prime number, \(\left( {a,q} \right) = 1,m\bar m \equiv 1\left( {\bmod {\kern 1pt} q} \right)\), F k (u) is a polynomial of degree k ≥ 2 with integer coefficients, and p runs over prime numbers. An upper estimate with a power saving is obtained for the absolute values of such sums for x ≥ q1/2+ε.  相似文献   

17.
The system ? i = ? i (?) + x i+2, \(i \in \overline {1,n - 2} \), ? n?1 = ? n?1(?) + u 1, ? n = ? n (?) + u 2,where ? i (·) are nonanticipating functionals of an arbitrary nature with the following properties—\(\left| {{\varphi _i}\left( \cdot \right)} \right| \leqslant c\sum\nolimits_{k = 1}^i {\left| {{x_k}\left( t \right)} \right|} \), \(i \in \overline {1,n} \), c = const—and u 1 and u 2 are the controls is considered. It is assumed that only the outputs x 1 and x 2 are measurable. The problem of synthesis of both continuous and impulsive controls u1 and u2, which make the system globally asymptotically stable, is solved. The solution of the problem is based on the construction of the observer-based equations, the quadratic Lyapunov function, and the averaging method.  相似文献   

18.
For any x ?? (0, 1], let the series \( {\sum}_{n=1}^{\infty }1/{d}_n(x) \) be the Sylvester expansion of x, where {d j (x),?j?≥?1} is a sequence of positive integers satisfying d1(x)?≥?2 and dj?+?1(x)?≥?d j (x)(d j (x)???1)?+?1 for j?≥?1. Suppose ? : ? → ?+ is a function satisfying ?(n+1) – ? (n) → ∞ as n → ∞. In this paper, we consider the set
$$ E\left(\phi \right)=\left\{x\kern0.5em \in \left(0,1\right]:\kern0.5em \underset{n\to \infty }{\lim}\frac{\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)}{\phi (n)}=1\right\} $$
and quantify the size of the set in the sense of Hausdorff dimension. As applications, for any β > 1 and γ > 0, we get the Hausdorff dimension of the set \( \left\{x\in \kern1em \left(0,1\right]:\kern0.5em {\lim}_{n\to \infty}\left(\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)\right)/{n}^{\beta }=\upgamma \right\}, \) and for any τ > 1 and η > 0, we get a lower bound of the Hausdorff dimension of the set \( \left\{x\kern0.5em \in \kern0.5em \left(0,1\right]:\kern1em {\lim}_{n\to \infty}\left(\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)\right)/{\tau}^n=\eta \right\}. \)  相似文献   

19.
Let x: M n?1 → R n be an umbilical free hypersurface with non-zero principal curvatures. Two basic invariants of M under the Laguerre transformation group of R n are Laguerre form C and Laguerre tensor L. In this paper, n > 3) complete hypersurface with vanishing Laguerre form and with constant Laguerre scalar curvature R in R n , denote the trace-free Laguerre tensor by ?\(\widetilde L = L - \frac{1}{{n - 1}}tr\left( L \right)\) · Id. If \(\widetilde L = L - \frac{1}{{n - 1}}tr\left( L \right)\), then M is Laguerre equivalent to a Laguerre isotropic hypersurface; and if \({\sup _M}\left\| {\widetilde L} \right\| = \frac{{\sqrt {\left( {n - 1} \right)\left( {n - 2} \right)} R}}{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}},\), M is Laguerre equivalent to the hypersurface ?x: H 1 × S n?2 → R n .  相似文献   

20.
Suppose that m ≥ 2, numbers p 1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + \cdots + \frac{1}{{{p_m}}} < 1\), and functions \({\gamma _1} \in {L^{{p_1}}}\left( {{?^1}} \right), \cdots ,{\gamma _m} \in {L^{{p_m}}}\left( {{?^1}} \right)\) are given. It is proved that if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both notions were defined by the author for functions in L p (?1), p ∈ (1, +∞]), then \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\mathop \smallint \limits_a^b \prod\limits_{k = 1}^m {[{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)]} d\tau } \right| \leqslant C\prod\limits_{k = 1}^m {{{\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|}_{L_{ak}^{pk}\left( {{R^1}} \right)}}} \) where the constant C > 0 is independent of the functions \(\Delta {\gamma _k} \in L_{ak}^{pk}\left( {{?^1}} \right)\) and \(L_{ak}^{pk}\left( {{?^1}} \right) \subset {L^{pk}}\left( {{?^1}} \right)\), 1 ≤ km, are special normed spaces. A condition for the integral over ?1 of a product of functions to be bounded is also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号