首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copositive optimization problems are particular conic programs: optimize linear forms over the copositive cone subject to linear constraints. Every quadratic program with linear constraints can be formulated as a copositive program, even if some of the variables are binary. So this is an NP-hard problem class. While most methods try to approximate the copositive cone from within, we propose a method which approximates this cone from outside. This is achieved by passing to the dual problem, where the feasible set is an affine subspace intersected with the cone of completely positive matrices, and this cone is approximated from within. We consider feasible descent directions in the completely positive cone, and regularized strictly convex subproblems. In essence, we replace the intractable completely positive cone with a nonnegative cone, at the cost of a series of nonconvex quadratic subproblems. Proper adjustment of the regularization parameter results in short steps for the nonconvex quadratic programs. This suggests to approximate their solution by standard linearization techniques. Preliminary numerical results on three different classes of test problems are quite promising.  相似文献   

2.
A polynomial optimization problem (POP) is an optimization problem in which both the objective and constraints can be written in terms of polynomials on the decision variables. Recently, it has been shown that under appropriate assumptions POPs can be reformulated as conic problems over the cone of completely positive tensors; which generalize the set of completely positive matrices. Here, we show that by explicitly handling the linear constraints in the formulation of the POP, one obtains a generalization of the completely positive reformulation of quadratically constrained quadratic programs recently introduced by Bai et al. (Math Program 1–28, 2016).  相似文献   

3.
Completely positive (CP) tensors, which correspond to a generalization of CP matrices, allow to reformulate or approximate a general polynomial optimization problem (POP) with a conic optimization problem over the cone of CP tensors. Similarly, completely positive semidefinite (CPSD) tensors, which correspond to a generalization of positive semidefinite (PSD) matrices, can be used to approximate general POPs with a conic optimization problem over the cone of CPSD tensors. In this paper, we study CP and CPSD tensor relaxations for general POPs and compare them with the bounds obtained via a Lagrangian relaxation of the POPs. This shows that existing results in this direction for quadratic POPs extend to general POPs. Also, we provide some tractable approximation strategies for CP and CPSD tensor relaxations. These approximation strategies show that, with a similar computational effort, bounds obtained from them for general POPs can be tighter than bounds for these problems obtained by reformulating the POP as a quadratic POP, which subsequently can be approximated using CP and PSD matrices. To illustrate our results, we numerically compare the bounds obtained from these relaxation approaches on small scale fourth-order degree POPs.  相似文献   

4.
In this paper, we consider the problem of approximately solving standard quartic polynomial optimization (SQPO). Using its reformulation as a copositive tensor programming, we show how to approximate the optimal solution of SQPO by using a series of polyhedral cones to approximate the cone of copositive tensors. The established quality of approximation is sharper than the ones studied in the literature. As an interesting extension, we also propose some approximation bounds on multi-homogenous polynomial optimization problems.  相似文献   

5.
In this paper, we model any nonconvex quadratic program having a mix of binary and continuous variables as a linear program over the dual of the cone of copositive matrices. This result can be viewed as an extension of earlier separate results, which have established the copositive representation of a small collection of NP-hard problems. A simplification, which reduces the dimension of the linear conic program, and an extension to complementarity constraints are established, and computational issues are discussed. Research partially supported by NSF Grant CCF-0545514.  相似文献   

6.
A standard quadratic problem consists of finding global maximizers of a quadratic form over the standard simplex. In this paper, the usual semidefinite programming relaxation is strengthened by replacing the cone of positive semidefinite matrices by the cone of completely positive matrices (the positive semidefinite matrices which allow a factorization FF T where F is some non-negative matrix). The dual of this cone is the cone of copositive matrices (i.e., those matrices which yield a non-negative quadratic form on the positive orthant). This conic formulation allows us to employ primal-dual affine-scaling directions. Furthermore, these approaches are combined with an evolutionary dynamics algorithm which generates primal-feasible paths along which the objective is monotonically improved until a local solution is reached. In particular, the primal-dual affine scaling directions are used to escape from local maxima encountered during the evolutionary dynamics phase.  相似文献   

7.
In an important paper, Burer (Math. Program Ser. A 120:479–495, 2009) recently showed how to reformulate general mixed-binary quadratic optimization problems (QPs) into copositive programs where a linear functional is minimized over a linearly constrained subset of the cone of completely positive matrices. In this note we interpret the implication from a topological point of view, showing that the Minkowski sum of the lifted feasible set and the lifted recession cone gives exactly the closure of the former. We also discuss why feasibility of the copositive program implies feasibility of the original mixed-binary QP, which can be derived from the arguments in Burer (Math. Program Ser. A 120:479–495, 2009) without any further condition.  相似文献   

8.
Copositive and completely positive matrices play an increasingly important role in Applied Mathematics, namely as a key concept for approximating NP-hard optimization problems. The cone of copositive matrices of a given order and the cone of completely positive matrices of the same order are dual to each other with respect to the standard scalar product on the space of symmetric matrices. This paper establishes some new relations between orthogonal pairs of such matrices lying on the boundary of either cone. As a consequence, we can establish an improvement on the upper bound of the cp-rank of completely positive matrices of general order and a further improvement for such matrices of order six.  相似文献   

9.
We consider the problem of projecting a matrix onto the cones of copositive and completely positive matrices. As this can not be done directly, we use polyhedral approximations of the cones. With the help of these projections we obtain a technique to compute factorizations of completely positive matrices. We also describe a method to determine a cutting plane which cuts off an arbitrary matrix from the completely positive (or copositive) cone.  相似文献   

10.
We present a new copositive Farkas lemma for a general conic quadratic system with binary constraints under a convexifiability requirement. By employing this Farkas lemma, we establish that a minimally exact conic programming relaxation holds for a convexifiable robust quadratic optimization problem with binary and quadratic constraints under a commonly used ellipsoidal uncertainty set of robust optimization. We then derive a minimally exact copositive relaxation for a robust binary quadratic program with conic linear constraints where the convexifiability easily holds.  相似文献   

11.
Copositive optimization is a quickly expanding scientific research domain with wide-spread applications ranging from global nonconvex problems in engineering to NP-hard combinatorial optimization. It falls into the category of conic programming (optimizing a linear functional over a convex cone subject to linear constraints), namely the cone C{\mathcal{C}} of all completely positive symmetric n × n matrices (which can be factorized into FFT{FF^\top} , where F is a rectangular matrix with no negative entry), and its dual cone C*{\mathcal{C}^*} , which coincides with the cone of all copositive matrices (those which generate a quadratic form taking no negative value over the positive orthant). We provide structural algebraic properties of these cones, and numerous (counter-)examples which demonstrate that many relations familiar from semidefinite optimization may fail in the copositive context, illustrating the transition from polynomial-time to NP-hard worst-case behaviour. In course of this development we also present a systematic construction principle for non-attainability phenomena, which apparently has not been noted before in an explicit way. Last but not least, also seemingly for the first time, a somehow systematic clustering of the vast and scattered literature is attempted in this paper.  相似文献   

12.
In this paper, we establish theorems of the alternative for inequality systems of real polynomials. For the real quadratic inequality system, we present two new results on the matrix decomposition, by which we establish two theorems of the alternative for the inequality system of three quadratic polynomials under an assumption that at least one of the involved forms be negative semidefinite. We also extend a theorem of the alternative to the case with a regular cone. For the inequality system of higher degree real polynomials, defined by even order tensors, a theorem of the alternative for the inequality system of two higher degree polynomials is established under suitable assumptions. As a byproduct, we give an equivalence result between two statements involving two higher degree polynomials. Based on this result, we investigate the optimality condition of a class of polynomial optimization problems under suitable assumptions.  相似文献   

13.
It is co-NP-complete to decide whether a given matrix is copositive or not. In this paper, this decision problem is transformed into a quadratic programming problem, which can be approximated by solving a sequence of linear conic programming problems defined on the dual cone of the cone of nonnegative quadratic functions over the union of a collection of ellipsoids. Using linear matrix inequalities (LMI) representations, each corresponding problem in the sequence can be solved via semidefinite programming. In order to speed up the convergence of the approximation sequence and to relieve the computational effort of solving linear conic programming problems, an adaptive approximation scheme is adopted to refine the union of ellipsoids. The lower and upper bounds of the transformed quadratic programming problem are used to determine the copositivity of the given matrix.  相似文献   

14.
Due to its versatility, copositive optimization receives increasing interest in the Operational Research community, and is a rapidly expanding and fertile field of research. It is a special case of conic optimization, which consists of minimizing a linear function over a cone subject to linear constraints. The diversity of copositive formulations in different domains of optimization is impressive, since problem classes both in the continuous and discrete world, as well as both deterministic and stochastic models are covered. Copositivity appears in local and global optimality conditions for quadratic optimization, but can also yield tighter bounds for NP-hard combinatorial optimization problems. Here some of the recent success stories are told, along with principles, algorithms and applications.  相似文献   

15.
We develop algorithms to construct inner approximations of the cone of positive semidefinite matrices via linear programming and second order cone programming. Starting with an initial linear algebraic approximation suggested recently by Ahmadi and Majumdar, we describe an iterative process through which our approximation is improved at every step. This is done using ideas from column generation in large-scale linear programming. We then apply these techniques to approximate the sum of squares cone in a nonconvex polynomial optimization setting, and the copositive cone for a discrete optimization problem.  相似文献   

16.
Space tensors appear in physics and mechanics. Mathematically, they are tensors in the three-dimensional Euclidean space. In the research area of diffusion magnetic resonance imaging, convex optimization problems are formed where higher order positive semi-definite space tensors are involved. In this short paper, we investigate these problems from the viewpoint of conic linear programming (CLP). We characterize the dual cone of the positive semi-definite space tensor cone, and study the CLP formulation and the duality of positive semi-definite space tensor conic programming.  相似文献   

17.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

18.
A symmetric tensor is called copositive if it generates a multivariate form taking nonnegative values over the nonnegative orthant. Copositive tensors have found important applications in polynomial optimization, tensor complementarity problems and vacuum stability of a general scalar potential. In this paper, we consider copositivity detection of tensors from both theoretical and computational points of view. After giving several necessary conditions for copositive tensors, we propose several new criteria for copositive tensors based on the representation of the multivariate form in barycentric coordinates with respect to the standard simplex and simplicial partitions. It is verified that, as the partition gets finer and finer, the concerned conditions eventually capture all strictly copositive tensors. Based on the obtained theoretical results with the help of simplicial partitions, we propose a numerical method to judge whether a tensor is copositive or not. The preliminary numerical results confirm our theoretical findings.  相似文献   

19.
With the coming of the big data era, high-order high-dimensional structured tensors received much attentions of researchers" in recent years, and now they are developed into a new research branch in mathematics named multilinear algebra. As a special kind of structured tensor, the copositive tensor receives a special concern due to its wide applications in vacuum stability of a general scalar potential, polynomial optimization, tensor complementarity problem and tensor eigenvalue complementarity problem. In this review, we will give a simple survey on recent advances of high-order copositive tensors and its applications. Some potential research directions in the future are also listed in the paper.  相似文献   

20.
This paper studies tensor eigenvalue complementarity problems. Basic properties of standard and complementarity tensor eigenvalues are discussed. We formulate tensor eigenvalue complementarity problems as constrained polynomial optimization. When one tensor is strictly copositive, the complementarity eigenvalues can be computed by solving polynomial optimization with normalization by strict copositivity. When no tensor is strictly copositive, we formulate the tensor eigenvalue complementarity problem equivalently as polynomial optimization by a randomization process. The complementarity eigenvalues can be computed sequentially. The formulated polynomial optimization can be solved by Lasserre’s hierarchy of semidefinite relaxations. We show that it has finite convergence for generic tensors. Numerical experiments are presented to show the efficiency of proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号