首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Haitao Qi  Jiaguo Liu 《Meccanica》2010,45(4):577-583
The aim of this paper is to present the analytical solutions corresponding to the time-fractional radial diffusion in some hollow geometries. The Caputo fractional derivative is used. With the method of separation of variables and the Laplace transform, the solutions are presented in terms of the Mittag-Leffler functions. In the limitting cases, the similar solutions for the ordinary diffusion and wave equations are obtained. Furthermore, the numerical results are illustrated graphically.  相似文献   

2.
The paper is concerned with analysis of time-fractional diffusion-wave equation with Caputo fractional derivative in a half-space. Several examples of problems with Dirichlet and Neumann conditions at the boundary of a half-space are solved using integral transforms technique. For the first and second time-derivative terms, the obtained solutions reduce to the solutions of the ordinary diffusion and wave equations. Numerical results are presented graphically for various values of order of fractional derivative.  相似文献   

3.
A three‐dimensional numerical model is developed for incompressible free surface flows. The model is based on the unsteady Reynolds‐averaged Navier–Stokes equations with a non‐hydrostatic pressure distribution being incorporated in the model. The governing equations are solved in the conventional sigma co‐ordinate system, with a semi‐implicit time discretization. A fractional step method is used to enable the pressure to be decomposed into its hydrostatic and hydrodynamic components. At every time step one five‐diagonal system of equations is solved to compute the water elevations and then the hydrodynamic pressure is determined from a pressure Poisson equation. The model is applied to three examples to simulate unsteady free surface flows where non‐hydrostatic pressures have a considerable effect on the velocity field. Emphasis is focused on applying the model to wave problems. Two of the examples are about modelling small amplitude waves where the hydrostatic approximation and long wave theory are not valid. The other example is the wind‐induced circulation in a closed basin. The numerical solutions are compared with the available analytical solutions for small amplitude wave theory and very good agreement is obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, the multi-step differential transform method (MsDTM) is applied to give approximate solutions of nonlinear ordinary differential equation such as fractional-non-linear oscillatory and vibration equations. The results indicate that the method is very effective and sufficient for solving nonlinear differential equations of fractional order.  相似文献   

5.
Accurate modeling of many dynamic systems leads to a set of Fractional Differential Equations (FDEs). This paper presents a general formulation and a solution scheme for a class of Fractional Optimal Control Problems (FOCPs) for those systems. The fractional derivative is described in the Riemann–Liouville sense. The performance index of a FOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of FDEs. The Calculus of Variations, the Lagrange multiplier, and the formula for fractional integration by parts are used to obtain Euler–Lagrange equations for the FOCP. The formulation presented and the resulting equations are very similar to those that appear in the classical optimal control theory. Thus, the present formulation essentially extends the classical control theory to fractional dynamic system. The formulation is used to derive the control equations for a quadratic linear fractional control problem. An approach similar to a variational virtual work coupled with the Lagrange multiplier technique is presented to find the approximate numerical solution of the resulting equations. Numerical solutions for two fractional systems, a time-invariant and a time-varying, are presented to demonstrate the feasibility of the method. It is shown that (1) the solutions converge as the number of approximating terms increase, and (2) the solutions approach to classical solutions as the order of the fractional derivatives approach to 1. The formulation presented is simple and can be extended to other FOCPs. It is hoped that the simplicity of this formulation will initiate a new interest in the area of optimal control of fractional systems.  相似文献   

6.
Accurate modeling of many dynamic systems leads to a set of Fractional Differential Equations (FDEs). This paper presents a general formulation and a solution scheme for a class of Fractional Optimal Control Problems (FOCPs) for those systems. The fractional derivative is described in the Riemann–Liouville sense. The performance index of a FOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of FDEs. The Calculus of Variations, the Lagrange multiplier, and the formula for fractional integration by parts are used to obtain Euler–Lagrange equations for the FOCP. The formulation presented and the resulting equations are very similar to those that appear in the classical optimal control theory. Thus, the present formulation essentially extends the classical control theory to fractional dynamic system. The formulation is used to derive the control equations for a quadratic linear fractional control problem. An approach similar to a variational virtual work coupled with the Lagrange multiplier technique is presented to find the approximate numerical solution of the resulting equations. Numerical solutions for two fractional systems, a time-invariant and a time-varying, are presented to demonstrate the feasibility of the method. It is shown that (1) the solutions converge as the number of approximating terms increase, and (2) the solutions approach to classical solutions as the order of the fractional derivatives approach to 1. The formulation presented is simple and can be extended to other FOCPs. It is hoped that the simplicity of this formulation will initiate a new interest in the area of optimal control of fractional systems.  相似文献   

7.
In this paper, with the aid of computer symbolic computation system such as Maple, an algebraic method is firstly applied to two nonlinear evolution equations, namely, nonlinear Schrodinger equation and Pochhammer–Chree (PC) equation. As a consequence, some new types of exact traveling wave solutions are obtained, which include bell and kink profile solitary wave solutions, triangular periodic wave solutions, and singular solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

8.
This paper is concerned with the thermoelastic behaviors of an elastic medium with variable thermal material properties. The problem is in the context of fractional order heat conduction. The governing equations with variable thermal properties were established by means of the fractional order calculus. The problem of a half-space formed of an elastic medium with variable thermal material properties was solved, and asymptotic solutions induced by a sudden temperature rise on the boundary were obtained by applying an asymptotic approach. The propagations of thermoelastic wave and thermal wave, as well as the distributions of displacement,temperature and stresses were obtained and plotted. Variations in the distributions with different values of fractional order parameter were discussed. The results were compared with those obtained from the case of constant material properties to evaluate the effects of variable material properties on thermoelastic behaviors.  相似文献   

9.
Kaur  Bikramjeet  Gupta  R. K. 《Nonlinear dynamics》2019,96(2):837-852
Nonlinear Dynamics - In this article, an improved F-expansion method with the Riccati equation is suggested for space–time fractional differential equations for exact solutions. The...  相似文献   

10.
Exact rogue wave solutions, including the first-order rogue wave solutions and the second-order ones, are constructed for the system of two coupled nonlinear Schrödinger (NLS) equations with varying potentials and nonlinearities. The method employed in this paper is the similarity transformation, which allows us to map the inhomogeneous coupled NLS equations with variable coefficients into the integrable Manakov system, whose explicit solutions have been well studied before. The result shows that the rogue wavelike solutions obtained by this transformation are controllable. Concretely, we illustrate how to control the trajectories of wave centers and the evolutions of wave peaks, and analyze the dynamic behaviors of the rogue wavelike solutions.  相似文献   

11.
A boundary element method is proposed for studying periodic shallow water problems. The numerical model is based on the shallow water equation. The key feature of this method is that the boundary integral equations are derived using the weighted residual method and the fundamental solutions for shallow water wave problems are obtained by solving the simultaneous singular equations. The accuracy of this method is studied for the wave reflection problem in a rectangular tank. As a result of this test, it has been shown that the number of element divisions and the distribution of nodes are significant to the accuracy. For numerical examples of external problems, the wave diffraction problems due to single cylindrical, double cylindrical and plate obstructions are analysed and compared with the exact and other numerical solutions. Relatively accurate solutions are obtained.  相似文献   

12.
In this paper, an extended tanh method with computerized symbolic computation is used for constructing the traveling wave solutions of coupled nonlinear equations arising in physics. The obtained solutions include solitons, kinks, and plane periodic solutions. The applied method will be used in further works to establish more entirely new solutions for other kinds of nonlinear evolution equations arising in physics.  相似文献   

13.
In this paper we investigate the possibility to formulate an implicit multistep numerical method for fractional differential equations, as a discrete dynamical system to model a class of discontinuous dynamical systems of fractional order. For this purpose, the problem is continuously transformed into a set-valued problem, to which the approximate selection theorem for a class of differential inclusions applies. Next, following the way presented in the book of Stewart and Humphries (Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1996) for the case of continuous differential equations, we prove that a variant of Adams?CBashforth?CMoulton method for fractional differential equations can be considered as defining a discrete dynamical system, approximating the underlying discontinuous fractional system. For this purpose, the existence and uniqueness of solutions are investigated. One example is presented.  相似文献   

14.
The thermal shock problems involved with fractional order generalized theory is studied by an analytical method. The asymptotic solutions for thermal responses induced by transient thermal shock are derived by means of the limit theorem of Laplace transform. An infinite solid with a cylindrical cavity subjected to a thermal shock at its inner boundary is studied. The propagation of thermal wave and thermal elastic wave, as well as the distributions of displacement,temperature and stresses are obtained from these asymptotic solutions. The investigation on the effect of fractional order parameter on the propagation of two waves is also conducted.  相似文献   

15.
有限元离散模型中的出平面波动   总被引:17,自引:3,他引:17  
刘晶波  廖振鹏 《力学学报》1992,24(2):207-215
采用分离变量技术,将二维出平面(Anti-Plane)波动问题的有限元运动方程化为两个联立的一维方程,获得了这一离散模型中波动的解析解,由此对有限元离散模型中出平面波动问题进行了深入的研究。分析了出平面弹性波的频散、截止频率、寄生振荡和有限元离散化引起的波传播的附加的各向异性性质等,同时讨论了时域离散化对出平面波动规律的影响。  相似文献   

16.
In this paper, the homotopy perturbation method (HPM) is developed to obtain approximate analytical solutions of a fractional Boussinesq equation with initial condition. The fractional derivatives are described in the Caputo sense. Some examples are given and comparisons are made, the comparisons show that the HPM is very effective and convenient and overcomes the difficulty of traditional methods. The numerical results show that the approaches are easy to implement and accurate when applied to space‐ and time‐fractional equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A semi-analytic approach is proposed to analyze steady state responses of dynamic systems containing fractional derivatives. A major purpose is to efficiently combine the harmonic balancing (HB) technique and Yuan–Agrawal (YA) memory-free principle. As steady solutions being expressed by truncated Fourier series, a simple yet efficient way is suggested based on the YA principle to explicitly separate the Caputo fractional derivative as periodic and decaying non-periodic parts. Neglecting the decaying terms and applying HB procedures result into a set of algebraic equations in the Fourier coefficients. The linear algebraic equations are solved exactly for linear systems, and the non-linear ones are solved by Newton–Raphson plus arc-length continuation algorithm for non-linear problems. Both periodic and triple-periodic solutions obtained by the presented method are in excellent agreement with those by either predictor–corrector (PC) or YA method. Importantly, the presented method is capable of detecting both stable and unstable periodic solutions, whereas time-stepping integration techniques such as YA and PC can only track stable ones. Together with the Floquet theory, therefore, the presented method allows us to address the bifurcations in detail of the steady responses of fractional Duffing oscillator. Symmetry breakings and cyclic-fold bifurcations are found and discussed for both periodic and triple-periodic solutions.  相似文献   

18.
The purpose of the current work is to provide an analytical solution framework based on extended fractional power series expansion to solve 2D temporal–spatial fractional differential equations. For this purpose, we first present a new trivariate expansion endowed with twofold Caputo-fractional derivatives ordering, namely \(\alpha ,\,\beta \in (0,1]\), to study the combined effect of fractional derivatives on both temporal and spatial coordinates. Then, by virtue of this expansion, a parallel scheme of the Taylor power series solution method is utilized to extract both closed-form and supportive approximate series solutions of 2D temporal–spatial fractional diffusion, wave-like, telegraph, and Burgers’ models. The obtained closed-form solutions are found to be in harmony with the exact solutions exist in the literature when \(\alpha =\beta =1\), which exhibits the legitimacy and the validity of the proposed method. Moreover, the accuracy of the approximate series solutions is validated using graphical and tabular tools. Finally, a version of Taylor’s Theorem that associated with our proposed expansion is derived in terms of mixed fractional derivatives.  相似文献   

19.
In this paper, a generalized auxiliary equation method with the aid of the computer symbolic computation system Maple is proposed to construct more exact solutions of nonlinear evolution equations, namely, the higher-order nonlinear Schrödinger equation, the Whitham–Broer–Kaup system, and the generalized Zakharov equations. As a result, some new types of exact travelling wave solutions are obtained, including soliton-like solutions, trigonometric function solutions, exponential solutions, and rational solutions. The method is straightforward and concise, and its applications are promising.  相似文献   

20.
The improved F-expansion method with a computerized symbolic computation is used to construct the exact traveling wave solutions of four nonlinear evolution equations in physics. As a result, many exact traveling wave solutions are obtained which include new soliton-like solutions, trigonometric function solutions, and rational solutions. The method is straightforward and concise, and it holds promise for many applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号