首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Denoising has to do with estimating a signal \(\mathbf {x}_0\) from its noisy observations \(\mathbf {y}=\mathbf {x}_0+\mathbf {z}\). In this paper, we focus on the “structured denoising problem,” where the signal \(\mathbf {x}_0\) possesses a certain structure and \(\mathbf {z}\) has independent normally distributed entries with mean zero and variance \(\sigma ^2\). We employ a structure-inducing convex function \(f(\cdot )\) and solve \(\min _\mathbf {x}\{\frac{1}{2}\Vert \mathbf {y}-\mathbf {x}\Vert _2^2+\sigma {\lambda }f(\mathbf {x})\}\) to estimate \(\mathbf {x}_0\), for some \(\lambda >0\). Common choices for \(f(\cdot )\) include the \(\ell _1\) norm for sparse vectors, the \(\ell _1-\ell _2\) norm for block-sparse signals and the nuclear norm for low-rank matrices. The metric we use to evaluate the performance of an estimate \(\mathbf {x}^*\) is the normalized mean-squared error \(\text {NMSE}(\sigma )=\frac{{\mathbb {E}}\Vert \mathbf {x}^*-\mathbf {x}_0\Vert _2^2}{\sigma ^2}\). We show that NMSE is maximized as \(\sigma \rightarrow 0\) and we find the exact worst-case NMSE, which has a simple geometric interpretation: the mean-squared distance of a standard normal vector to the \({\lambda }\)-scaled subdifferential \({\lambda }\partial f(\mathbf {x}_0)\). When \({\lambda }\) is optimally tuned to minimize the worst-case NMSE, our results can be related to the constrained denoising problem \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-\mathbf {x}\Vert _2\}\). The paper also connects these results to the generalized LASSO problem, in which one solves \(\min _{f(\mathbf {x})\le f(\mathbf {x}_0)}\{\Vert \mathbf {y}-{\mathbf {A}}\mathbf {x}\Vert _2\}\) to estimate \(\mathbf {x}_0\) from noisy linear observations \(\mathbf {y}={\mathbf {A}}\mathbf {x}_0+\mathbf {z}\). We show that certain properties of the LASSO problem are closely related to the denoising problem. In particular, we characterize the normalized LASSO cost and show that it exhibits a “phase transition” as a function of number of observations. We also provide an order-optimal bound for the LASSO error in terms of the mean-squared distance. Our results are significant in two ways. First, we find a simple formula for the performance of a general convex estimator. Secondly, we establish a connection between the denoising and linear inverse problems.  相似文献   

2.
Let \(\pi _{\varphi }\) (or \(\pi _{\psi }\)) be an automorphic cuspidal representation of \(\text {GL}_{2} (\mathbb {A}_{\mathbb {Q}})\) associated to a primitive Maass cusp form \(\varphi \) (or \(\psi \)), and \(\mathrm{sym}^j \pi _{\varphi }\) be the jth symmetric power lift of \(\pi _{\varphi }\). Let \(a_{\mathrm{sym}^j \pi _{\varphi }}(n)\) denote the nth Dirichlet series coefficient of the principal L-function associated to \(\mathrm{sym}^j \pi _{\varphi }\). In this paper, we study first moments of Dirichlet series coefficients of automorphic representations \(\mathrm{sym}^3 \pi _{\varphi }\) of \(\text {GL}_{4}(\mathbb {A}_{\mathbb {Q}})\), and \(\pi _{\psi }\otimes \mathrm{sym}^2 \pi _{\varphi }\) of \(\text {GL}_{6}(\mathbb {A}_{\mathbb {Q}})\). For \(3 \le j \le 8\), estimates for \(|a_{\mathrm{sym}^j \pi _{\varphi }}(n)|\) on average over a short interval have also been established.  相似文献   

3.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

4.
5.
6.
We deal with Morrey spaces on bounded domains \(\Omega \) obtained by different approaches. In particular, we consider three settings \(\mathcal {M}_{u,p}(\Omega )\), \(\mathbb {M}_{u,p}(\Omega )\) and \(\mathfrak {M}_{u,p}(\Omega )\), where \(0<p\le u<\infty \), commonly used in the literature, and study their connections and diversities. Moreover, we determine the growth envelopes \(\mathfrak {E}_{\mathsf {G}}(\mathcal {M}_{u,p}(\Omega ))\) as well as \(\mathfrak {E}_{\mathsf {G}}(\mathfrak {M}_{u,p}(\Omega ))\), and obtain some applications in terms of optimal embeddings. Surprisingly, it turns out that the interplay between p and u in the sense of whether \(\frac{n}{u}\ge \frac{1}{p}\) or \(\frac{n}{u} < \frac{1}{p}\) plays a decisive role when it comes to the behaviour of these spaces.  相似文献   

7.
We consider the robust (or min-max) optimization problem
$J^*:=\max_{\mathbf{y}\in{\Omega}}\min_{\mathbf{x}}\{f(\mathbf{x},\mathbf{y}): (\mathbf{x},\mathbf{y})\in\mathbf{\Delta}\}$
where f is a polynomial and \({\mathbf{\Delta}\subset\mathbb{R}^n\times\mathbb{R}^p}\) as well as \({{\Omega}\subset\mathbb{R}^p}\) are compact basic semi-algebraic sets. We first provide a sequence of polynomial lower approximations \({(J_i)\subset\mathbb{R}[\mathbf{y}]}\) of the optimal value function \({J(\mathbf{y}):=\min_\mathbf{x}\{f(\mathbf{x},\mathbf{y}): (\mathbf{x},\mathbf{y})\in \mathbf{\Delta}\}}\). The polynomial \({J_i\in\mathbb{R}[\mathbf{y}]}\) is obtained from an optimal (or nearly optimal) solution of a semidefinite program, the ith in the “joint + marginal” hierarchy of semidefinite relaxations associated with the parametric optimization problem \({\mathbf{y}\mapsto J(\mathbf{y})}\), recently proposed in Lasserre (SIAM J Optim 20, 1995-2022, 2010). Then for fixed i, we consider the polynomial optimization problem \({J^*_i:=\max\nolimits_{\mathbf{y}}\{J_i(\mathbf{y}):\mathbf{y}\in{\Omega}\}}\) and prove that \({\hat{J}^*_i(:=\displaystyle\max\nolimits_{\ell=1,\ldots,i}J^*_\ell)}\) converges to J* as i → ∞. Finally, for fixed ? ≤ i, each \({J^*_\ell}\) (and hence \({\hat{J}^*_i}\)) can be approximated by solving a hierarchy of semidefinite relaxations as already described in Lasserre (SIAM J Optim 11, 796–817, 2001; Moments, Positive Polynomials and Their Applications. Imperial College Press, London 2009).
  相似文献   

8.
The paper concerns investigations of holomorphic functions of several complex variables with a factorization of their Temljakov transform. Firstly, there were considered some inclusions between the families \(\mathcal {C}_{\mathcal {G}},\mathcal {M}_{\mathcal {G}},\mathcal {N}_{\mathcal {G}},\mathcal {R}_{\mathcal {G}},\mathcal {V}_{\mathcal {G}}\) of such holomorphic functions on complete n-circular domain \(\mathcal {G}\) of \(\mathbb {C}^{n}\) in some papers of Bavrin, Fukui, Higuchi, Michiwaki. A motivation of our investigations is a condensation of the mentioned inclusions by some new families of Bavrin’s type. Hence we consider some families \(\mathcal {K}_{ \mathcal {G}}^{k},k\ge 2,\) of holomorphic functions f :  \(\mathcal {G}\rightarrow \mathbb {C},f(0)=1,\) defined also by a factorization of \( \mathcal {L}f\) onto factors from \(\mathcal {C}_{\mathcal {G}}\) and \(\mathcal {M} _{\mathcal {G}}.\) We present some interesting properties and extremal problems on \(\mathcal {K}_{\mathcal {G}}^{k}\).  相似文献   

9.
Curves of genus \(g\) which admit a map to \(\mathbf {P}^{1}\) with specified ramification profile \(\mu\) over \(0\in \mathbf {P}^{1}\) and \(\nu\) over \(\infty\in \mathbf {P}^{1}\) define a double ramification cycle \(\mathsf{DR}_{g}(\mu,\nu)\) on the moduli space of curves. The study of the restrictions of these cycles to the moduli of nonsingular curves is a classical topic. In 2003, Hain calculated the cycles for curves of compact type. We study here double ramification cycles on the moduli space of Deligne-Mumford stable curves.The cycle \(\mathsf{DR}_{g}(\mu,\nu)\) for stable curves is defined via the virtual fundamental class of the moduli of stable maps to rubber. Our main result is the proof of an explicit formula for \(\mathsf{DR}_{g}(\mu,\nu)\) in the tautological ring conjectured by Pixton in 2014. The formula expresses the double ramification cycle as a sum over stable graphs (corresponding to strata classes) with summand equal to a product over markings and edges. The result answers a question of Eliashberg from 2001 and specializes to Hain’s formula in the compact type case.When \(\mu=\nu=\emptyset\), the formula for double ramification cycles expresses the top Chern class \(\lambda_{g}\) of the Hodge bundle of \(\overline {\mathcal{M}}_{g}\) as a push-forward of tautological classes supported on the divisor of non-separating nodes. Applications to Hodge integral calculations are given.  相似文献   

10.
In this paper, we investigate solutions of the hyperbolic Poisson equation \(\Delta _{h}u(x)=\psi (x)\), where \(\psi \in L^{\infty }(\mathbb {B}^{n}, {\mathbb R}^n)\) and
$$\begin{aligned} \Delta _{h}u(x)= (1-|x|^2)^2\Delta u(x)+2(n-2)\left( 1-|x|^2\right) \sum _{i=1}^{n} x_{i} \frac{\partial u}{\partial x_{i}}(x) \end{aligned}$$
is the hyperbolic Laplace operator in the n-dimensional space \(\mathbb {R}^n\) for \(n\ge 2\). We show that if \(n\ge 3\) and \(u\in C^{2}(\mathbb {B}^{n},{\mathbb R}^n) \cap C(\overline{\mathbb {B}^{n}},{\mathbb R}^n )\) is a solution to the hyperbolic Poisson equation, then it has the representation \(u=P_{h}[\phi ]-G_{ h}[\psi ]\) provided that \(u\mid _{\mathbb {S}^{n-1}}=\phi \) and \(\int _{\mathbb {B}^{n}}(1-|x|^{2})^{n-1} |\psi (x)|\,d\tau (x)<\infty \). Here \(P_{h}\) and \(G_{h}\) denote Poisson and Green integrals with respect to \(\Delta _{h}\), respectively. Furthermore, we prove that functions of the form \(u=P_{h}[\phi ]-G_{h}[\psi ]\) are Lipschitz continuous.
  相似文献   

11.
Let \(\mathcal {F}_{0}=\{f_{i}\}_{i\in \mathbb {I}_{n_{0}}}\) be a finite sequence of vectors in \(\mathbb {C}^{d}\) and let \(\mathbf {a}=(a_{i})_{i\in \mathbb {I}_{k}}\) be a finite sequence of positive numbers, where \(\mathbb {I}_{n}=\{1,\ldots , n\}\) for \(n\in \mathbb {N}\). We consider the completions of \(\mathcal {F}_{0}\) of the form \(\mathcal {F}=(\mathcal {F}_{0},\mathcal {G})\) obtained by appending a sequence \(\mathcal {G}=\{g_{i}\}_{i\in \mathbb {I}_{k}}\) of vectors in \(\mathbb {C}^{d}\) such that ∥g i 2 = a i for \(i\in \mathbb {I}_{k}\), and endow the set of completions with the metric \(d(\mathcal {F},\tilde {\mathcal {F}}) =\max \{ \,\|g_{i}-\tilde {g}_{i}\|: \ i\in \mathbb {I}_{k}\}\) where \(\tilde {\mathcal {F}}=(\mathcal {F}_{0},\,\tilde {\mathcal {G}})\). In this context we show that local minimizers on the set of completions of a convex potential P φ , induced by a strictly convex function φ, are also global minimizers. In case that φ(x) = x 2 then P φ is the so-called frame potential introduced by Benedetto and Fickus, and our work generalizes several well known results for this potential. We show that there is an intimate connection between frame completion problems with prescribed norms and frame operator distance (FOD) problems. We use this connection and our results to settle in the affirmative a generalized version of Strawn’s conjecture on the FOD.  相似文献   

12.
This article studies a variation of the standard compressive sensing problem, in which sparse vectors \(\mathbf{x}\in\mathbb{R}^{N}\) are acquired through inaccurate saturated measurements \(\mathbf{y}= \mathcal{S}(\mathbf {A}\mathbf{x}+ \mathbf{e}) \in\mathbb{R}^{m}\), \(m \ll N\). The saturation function \(\mathcal{S}\) acts componentwise by sending entries that are large in absolute value to plus-or-minus a threshold while keeping the other entries unchanged. The present study focuses on the effect of the presaturation error \(\mathbf{e}\in\mathbb{R}^{m}\). The existing theory for accurate saturated measurements, i.e., the case \(\mathbf{e}= \mathbf{0}\), which exhibits two regimes depending on the magnitude of \(\mathbf{x}\in\mathbb {R}^{N}\), is extended here. A recovery procedure based on convex optimization is proposed and shown to be robust to presaturation error in both regimes. Another procedure ignoring the presaturation error is also analyzed and shown to be robust in the small magnitude regime.  相似文献   

13.
The partition algebra \(\mathsf {P}_k(n)\) and the symmetric group \(\mathsf {S}_n\) are in Schur–Weyl duality on the k-fold tensor power \(\mathsf {M}_n^{\otimes k}\) of the permutation module \(\mathsf {M}_n\) of \(\mathsf {S}_n\), so there is a surjection \(\mathsf {P}_k(n) \rightarrow \mathsf {Z}_k(n) := \mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes k})\), which is an isomorphism when \(n \ge 2k\). We prove a dimension formula for the irreducible modules of the centralizer algebra \(\mathsf {Z}_k(n)\) in terms of Stirling numbers of the second kind. Via Schur–Weyl duality, these dimensions equal the multiplicities of the irreducible \(\mathsf {S}_n\)-modules in \(\mathsf {M}_n^{\otimes k}\). Our dimension expressions hold for any \(n \ge 1\) and \(k\ge 0\). Our methods are based on an analog of Frobenius reciprocity that we show holds for the centralizer algebras of arbitrary finite groups and their subgroups acting on a finite-dimensional module. This enables us to generalize the above result to various analogs of the partition algebra including the centralizer algebra for the alternating group acting on \(\mathsf {M}_n^{\otimes k}\) and the quasi-partition algebra corresponding to tensor powers of the reflection representation of \(\mathsf {S}_n\).  相似文献   

14.
The main object of study in this paper is the double holomorphic Eisenstein series \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) having two complex variables \(\mathbf{s}=(s_1,s_2)\) and two parameters \(\mathbf{z}= (z_1,z_2)\) which satisfies either \(\mathbf{z}\in (\mathfrak {H}^+)^2\) or \(\mathbf{z}\in (\mathfrak {H}^-)^2\), where \(\mathfrak {H}^{\pm }\) denotes the complex upper and lower half-planes, respectively. For \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\), its transformation properties and asymptotic aspects are studied when the distance \(|z_2-z_1|\) becomes both small and large under certain natural settings on the movement of \(\mathbf{z}\in (\mathfrak {H}^{\pm })^2\). Prior to the proofs our main results, a new parameter \(\eta \), which plays a pivotal role in describing our results, is introduced in connection with the difference \(z_2-z_1\). We then establish complete asymptotic expansions for \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) when \(\mathbf{z}\) moves within the poly-sector either \((\mathfrak {H}^+)^2\) or \((\mathfrak {H}^-)^2\), so as to \(\eta \rightarrow 0\) through \(|\arg \eta |<\pi /2\) in the ascending order of \(\eta \) (Theorem 1). This further leads us to show that counterpart expansions exist for \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) in the descending order of \(\eta \) as \(\eta \rightarrow \infty \) through \(|\arg \eta |<\pi /2\) (Theorem 2). Our second main formula in Theorem 2 yields a functional equation for \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) (Corollaries 2.12.2), and also reduces naturally to various expressions of \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) in closed forms for integer lattice point \(\mathbf{s}\in \mathbb {Z}^2\) (Corollaries 2.32.17). Most of these results reveal that the particular values of \(\widetilde{\zeta _{\mathbb {Z}^2}}(\mathbf{s};\mathbf{z})\) at \(\mathbf{s}\in \mathbb {Z}^2\) are closely linked to Weierstraß’ elliptic function, the classical Eisenstein series reformulated by Ramanujan, and the Jordan–Kronecker type functions, each associated with the bases \(2\pi (1, z_j)\), \(j=1,2\). The latter two functions were extensively utilized by Ramanujan in the course of developing his theories of Eisenstein series, elliptic functions, and theta functions. As for the methods used, crucial roles in the proofs are played by the Mellin–Barnes type integrals, manipulated with several properties of hypergeometric functions; the transference from Theorem 1 to Theorem 2 is, for instance, achieved by a connection formula for Kummer’s confluent hypergeometric functions.  相似文献   

15.
In Advances in Mathematical Physics (2011) we showed that the weighted shift \(z^{p}\frac{d^{p+1}}{dz^{p+1}} (p=0, 1, 2,\ldots )\) acting on classical Bargmann space \(\mathbb {B}_{p}\) is chaotic operator. In Journal of Mathematical physics (2014), we constructed an chaotic weighted shift \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1} (p=0, 1, 2,\ldots )\) on some lattice Fock–Bargmann \(\mathbb {E}_{p}^{\alpha }\) generated by the orthonormal basis \( {e_{m}^{(\alpha ,p)}(z) = e_{m}^{\alpha } ; m=p, p+1,\ldots }\) where \( {e_{m}^{\alpha }(z) = (\frac{2\nu }{\pi })^{1/4}e^{\frac{\nu }{2}z^{2}}e^{-\frac{\pi ^{2}}{\nu }(m +\alpha )^{2} +2i\pi (m +\alpha )z}; m \in \mathbb {N}}\) with \(\nu , \alpha \) are real numbers; \(\nu > 0\), \(\mathbb {M}\) is an weighted shift and \(\mathbb {M^{*}}\) is the adjoint of the \(\mathbb {M}\). In this paper we study the chaoticity of tensor product \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1}\otimes z^{p}\frac{d^{p}}{dz^{p+1}} (p=0, 1, 2, \ldots )\) acting on \(\mathbb {E}_{p}^{\alpha }\otimes \mathbb {B}_{p}\).  相似文献   

16.
For \(k,m,n\in {\mathbb {N}}\), we consider \(n^k\times n^k\) random matrices of the form
$$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$
where \(\tau _{\alpha }\), \(\alpha \in [m]\), are real numbers and \({\mathbf {y}}_\alpha ^{(j)}\), \(\alpha \in [m]\), \(j\in [k]\), are i.i.d. copies of a normalized isotropic random vector \({\mathbf {y}}\in {\mathbb {R}}^n\). For every fixed \(k\ge 1\), if the Normalized Counting Measures of \(\{\tau _{\alpha }\}_{\alpha }\) converge weakly as \(m,n\rightarrow \infty \), \(m/n^k\rightarrow c\in [0,\infty )\) and \({\mathbf {y}}\) is a good vector in the sense of Definition 1.1, then the Normalized Counting Measures of eigenvalues of \({\mathcal {M}}_{n,m,k}({\mathbf {y}})\) converge weakly in probability to a nonrandom limit found in Marchenko and Pastur (Math USSR Sb 1:457–483, 1967). For \(k=2\), we define a subclass of good vectors \({\mathbf {y}}\) for which the centered linear eigenvalue statistics \(n^{-1/2}{{\mathrm{Tr}}}\varphi ({\mathcal {M}}_{n,m,2}({\mathbf {y}}))^\circ \) converge in distribution to a Gaussian random variable, i.e., the Central Limit Theorem is valid.
  相似文献   

17.
We compute the \({\mathbb {Z}}\)-rank of the subgroup \(\widetilde{E}_K =\bigcap _{n\in {\mathbb {N}}} N_{K_n/K}(K_n^\times )\) of elements of the multiplicative group of a number field K that are norms from every finite level of the cyclotomic \({\mathbb {Z}}_\ell \)-extension \(K^c\) of K. Thus we compare its \(\ell \)-adification \({\mathbb {Z}}_\ell \otimes _{\mathbb {Z}}\widetilde{E}_K\) with the group of logarithmic units \(\widetilde{\varepsilon }_K\). By the way we point out an easy proof of the Gross–Kuz’min conjecture for \(\ell \)-undecomposed extensions of abelian fields.  相似文献   

18.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

19.
Let \(\ell \) be a prime and let \(L/ \mathbb {Q}\) be a Galois number field with Galois group isomorphic to \( \mathbb {Z}/\ell \mathbb {Z}\). We show that the shape of L, see Definition 1.2, is either \(\frac{1}{2}\mathbb {A}_{\ell -1}\) or a fixed sub-lattice depending only on \(\ell \); such a dichotomy in the value of the shape only depends on the type of ramification of L. This work is motivated by a result of Bhargava and Shnidman, and a previous work of the first named author, on the shape of \( \mathbb {Z}/3 \mathbb {Z}\) number fields.  相似文献   

20.
The Walsh transform \(\widehat{Q}\) of a quadratic function \(Q:{\mathbb F}_{p^n}\rightarrow {\mathbb F}_p\) satisfies \(|\widehat{Q}(b)| \in \{0,p^{\frac{n+s}{2}}\}\) for all \(b\in {\mathbb F}_{p^n}\), where \(0\le s\le n-1\) is an integer depending on Q. In this article, we study the following three classes of quadratic functions of wide interest. The class \(\mathcal {C}_1\) is defined for arbitrary n as \(\mathcal {C}_1 = \{Q(x) = \mathrm{Tr_n}(\sum _{i=1}^{\lfloor (n-1)/2\rfloor }a_ix^{2^i+1})\;:\; a_i \in {\mathbb F}_2\}\), and the larger class \(\mathcal {C}_2\) is defined for even n as \(\mathcal {C}_2 = \{Q(x) = \mathrm{Tr_n}(\sum _{i=1}^{(n/2)-1}a_ix^{2^i+1}) + \mathrm{Tr_{n/2}}(a_{n/2}x^{2^{n/2}+1}) \;:\; a_i \in {\mathbb F}_2\}\). For an odd prime p, the subclass \(\mathcal {D}\) of all p-ary quadratic functions is defined as \(\mathcal {D} = \{Q(x) = \mathrm{Tr_n}(\sum _{i=0}^{\lfloor n/2\rfloor }a_ix^{p^i+1})\;:\; a_i \in {\mathbb F}_p\}\). We determine the generating function for the distribution of the parameter s for \(\mathcal {C}_1, \mathcal {C}_2\) and \(\mathcal {D}\). As a consequence we completely describe the distribution of the nonlinearity for the rotation symmetric quadratic Boolean functions, and in the case \(p > 2\), the distribution of the co-dimension for the rotation symmetric quadratic p-ary functions, which have been attracting considerable attention recently. Our results also facilitate obtaining closed formulas for the number of such quadratic functions with prescribed s for small values of s, and hence extend earlier results on this topic. We also present the complete weight distribution of the subcodes of the second order Reed–Muller codes corresponding to \(\mathcal {C}_1\) and \(\mathcal {C}_2\) in terms of a generating function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号