首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 768 毫秒
1.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

2.
The results of studies of the absorption spectra of nickel orthoborate Ni3(BO3)2 in the range of electronic dd-transitions are reported. The obtained data are analyzed in the framework of the crystal field theory. The Ni2+ ions are located in two crystallographically nonequivalent positions 2a and 4f with point symmetry groups C2h and C2, respectively, surrounded by six oxygen ions forming deformed octahedra. The absorption spectra exhibit three intense bands corresponding to spin-resolved transitions from the ground state of nickel ion 3A2g (3F) to the sublevels of the 3T2g (3F), 3T1g (3F) and 3T1g (3P) triplets split by the spinorbit interaction and the rhombic component of the crystal field. At temperatures below 100 K, the spectra exhibit a thin structure, in which phonon-free lines can be distinguished. Comparison of the calculated frequencies of the zero-phonon transitions with the experimental data allows estimating parameters of the crystal field acting on the nickel ions in the 2a- and 4f-positions, as well as the parameters of electrostatic interaction between the 3d electrons and spin-orbit interaction constants.  相似文献   

3.
The temperature-dependent field cooling (FC) and zero-field cooling (ZFC) magnetizations, i.e., M FC and M ZFC, measured under different magnetic fields from 500 Oe to 20 kOe have been investigated on two exchange–spring CoFe2O4/CoFe2 composites with different relative content of CoFe2. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at a field-dependent irreversible temperature T irr. For the sample with less CoFe2, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad peak at an intermediate temperature T 2 below T irr , and the moments are suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the ?d(M FC ? M ZFC)/dT curves of the sample with more CoFe2, besides a broad peat at an intermediate temperature T 2, a rapid rise around the low temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
Graphical abstract CoFe2O4/CoFe2 composites with different relative content of CoFe2 were prepared by reducing CoFe2O4 in H2 for 4 h (S4H) and 8 h (S8H). The temperature-dependent FC and ZFC magnetizations, i.e., M FC and M ZFC, under different magnetic fields from 500 Oe to 20 kOe have been investigated. Two samples exhibit different magnetization reversal behaviors. With decreasing temperature, a progressive freezing of the moments in two composites occurs at field-dependent irreversible temperature T irr. For the S4H sample, the curves of ?d(M FC ? M ZFC)/dT versus temperature T exhibit a broad and field-dependent relaxing peak at T 2 below T irr (figure a), and the moments were suggested not to fully freeze till the lowest measuring temperature 10 K. However, for the S8H sample, it exhibits the reentrant spin-glass state around 50 K, as evidenced by a peak in the M FC curve (inset in figure b) and as a result of the cooperative effects of the random anisotropy of CoFe2O4, exchange–spring occurring at the interface of CoFe2O4 and CoFe2 together with the inter-particle dipolar interaction (figure c); in ?d(M FC ? M ZFC)/dT curves, besides a broad relaxing peat at T 2, a rapid rise around the low-temperature T 1~15 K is observed, below which the moments are suggested to fully freeze. Increase of magnetic field from 2 kOe leads to the shift of T 2 and T irr towards a lower temperature, and the shift of T 2 is attributable to the moment reversal of CoFe2O4.
  相似文献   

4.
We report similarities and differences of the transport features in the spin density wave (SDW) and in the field-induced SDW (FISDW) phases of the quasi-one-dimensional compound (TMTSF)2PF6. As temperature decreases below ≈2 K, the resistance in both phases exhibits a maximum and a subsequent strong drop. However, the characteristic temperature of the R(T) maximum and its scaling behavior in different magnetic fields B are evidence that the nonmonotonic R(T) dependences have different origin in SDW and FISDW regions of the phase diagram. We also found that the borderline T0(B, P) which divides the FISDW region of the P-B-T phase diagram into the hysteresis and nonhysteresis domains terminates in the N=1 subphase; the borderline thus has no extension to the SDW N=0 phase.  相似文献   

5.
Synthetic single crystals of chromium-and lithium-doped forsterite, namely, (Cr,Li): Mg2SiO4, are studied using electron paramagnetic resonance spectroscopy. It is revealed that, apart from the known centers Cr3+(M1) and Cr3+(M2) (with local symmetries Ci and Cs, respectively), these crystals involve two new types of centers with C1 symmetry, namely, Cr3+(M1)′ and Cr3+(M2)′ centers. The standard parameters D and E in a zero magnetic field [zero-field splitting (ZFS) parameters expressed in GHz] and principal components of the g tensor are determined as follows: D=31.35, E=8.28, and g=(1.9797, 1.9801, 1.9759) for Cr3+(M1)′ centers and D=15.171, E=2.283, and g=(1.9747, 1.9769, 1.9710) for Cr3+(M2)′ centers. It is found that the lowsymmetric effect of misalignment of the principal axes of the ZFS and g tensors most clearly manifests itself (i.e., its magnitude reaches 19°) in the case of Cr3+(M2)′ centers. The structural models Cr3+(M1)-Li+(M2) and Cr3+(M2)-Li+(M1) are proposed for the Cr3+(M1)′ and Cr3+(M2)′ centers, respectively. The concentrations of both centers are determined. It is demonstrated that, upon the formation of Cr3+-Li+ ion pairs, the M1 position for chromium appears to be two times more preferable than the M2 position. Reasoning from the results obtained, the R1 line (the 2E4A2 transition) observed in the luminescence spectra of (Cr,Li): Mg2SiO4 crystals in the vicinity of 699.6 nm is assigned to the Cr3+(M1)′ center.  相似文献   

6.
High-frequency broad-band (65–240 GHz) EPR is used to study impurity centers of bivalent chromium in a CdGa2S4 crystal. It is found that the EPR spectra correspond to tetragonal symmetry. The spin Hamiltonian H = βB · g · S + B 2 0 O 2 0 + B 4 0 O 4 0 + B 4 4 O 4 4 with the parameters B 2 0 =23659±2 MHz, B 4 0 =1.9±1 MHz, |B 4 4 |=54.2±2 MHz, g=1.93±0.02, and g=1.99±0.02 is used to describe the observed spectra. It is concluded that chromium ions occupy one of the tetrahedrally coordinated cation positions.  相似文献   

7.
We report on measurements of the temperature dependence of resistivity, ρ(T), for single-crystal samples of ZrB12, ZrB2, and polycrystalline samples of MgB2. It is shown that the cluster compound ZrB12 behaves as a simple metal in the normal state, with a typical Bloch-Grüneisen ρ(T) dependence. However, the resistive Debye temperature, TR=300 K, is three times smaller than TD obtained from specific heat data. We observe the T2 term in ρ(T) of all these borides, which could be interpreted as an indication of strong electron-electron interaction.  相似文献   

8.
The temperature dependence of the residual polarization of the nonergodic relaxation state (NERS) obtained from the measurements of pyroelectric current during zero-field heating (ZFH) in the temperature interval from 10 to 295 K is investigated for the Cd2Nb2O7 relaxation system in two cases: (1) after sample cooling in a constant electric field E (FC) from T = 295 K to a preset temperature, which is much lower than the “freezing” temperature of the relaxation state (T f ≈ 182 K), field removal, and subsequent cooling in zero field (ZFC) to T = 10 K and (2) after ZFC from T = 295 K to the same temperature below T f , application of the same field, and FC to T = 10 K. The behavior of the P r FC (T) and P r ZFC (T) dependences is analyzed. In the field E < 2 kV/cm, the P r ZFC curves as functions of 1/T have a broad low-intensity peak in the region TT f , which vanishes in stronger fields, when the P r FC (1/T) curves intersect at TT f and have no anomalies. The difference in the behavior of P r ZFC (T) and P r FC (T) indicates the difference in the nature of NERS formed during ZFC and FC of the system upon a transition through T f . In the ZFC mode, NERS exhibits glasslike behavior; in the FC regime, features of the ferroelectric behavior even in the weak field. Analogous variations of P r ZFC (T) and P r FC (T) in a classical ferroelectric KDP are also given for comparison.  相似文献   

9.
The temperature dependences of the intense magnetocaloric effect ΔT AD(T, H) and the heat capacity C p (T) of the (La0.4Eu0.6)0.7Pb0.3MnO3 manganite are directly measured using adiabatic calorimetry. The experimental dependences ΔT AD(T) are in satisfactory agreement with those calculated from the data on the behavior of the magnetization. The factors responsible for the absence of an anomaly in the experimental temperature dependence of the heat capacity C p (T) in the range of the magnetic phase transition are discussed.  相似文献   

10.
The results of x-ray structural studies of the [N(C2H5)4]2CdBr4 crystal at low temperatures are presented. The unit cell parameters and the thermal expansion coefficients along the main crystallographic directions are measured at temperatures in the range from 90 to 320 K. The integrated intensities of the diffraction reflections are investigated as a function of the temperature. It is shown that the curves a = f(T), c = f(T), I 500 = f(T), and I 006 = f(T) at temperatures T 1 ≈ 174 K and T 2 ≈ 226 K exhibit anomalies in the form of abrupt changes in the lattice parameters and the diffraction reflection intensities. This indicates that the [N(C2H5)4]2CdBr4 crystal undergo phase transitions at these temperatures. Moreover, there is an anomaly in the form of a small maximum at the temperature T 3 = 293 K.  相似文献   

11.
The spins of Ru5+ ions in Sr2YRuO6 form a face-centered cubic lattice with antiferromagnetic nearest neighbor interaction J≈25 meV. The antiferromagnetic structure of the first type experimentally observed below the Néel temperature T N =26 K corresponds to four frustrated spins of 12 nearest neighbors. In the Heisenberg model in the spin-wave approximation, the frustrations already cause instability of the antiferromagnetic state at T=0 K. This state is stabilized by weak anisotropy D or exchange interaction I with the next-nearest neighbors. Low D/JI/J~10?3 values correspond to the experimental T N and sublattice magnetic moment values.  相似文献   

12.
New metal oxide pyroxene compound NaVGe2O6 containing isolated edge-sharing VO6 (S=1) chains undergoes transition into a long-range antiferromagnetic state at T N =16 K. The broad maximum in the temperature dependence of magnetic susceptibility at T M =26 K indicates the low-dimensional character of the magnetic subsystem. Even though the antiferromagnetic ordering is accompanied by a sharp peak of specific heat, significant magnetic entropy is released above the Néel temperature.  相似文献   

13.
The parameters of the long-wavelength exciton band for Rb2CdI4 films are investigated in the temperature range 90–410 K. It is found that the Rb2CdI4 films undergo a sequence of phase transitions at temperatures Tc1=380 K (paraphase → incommensurate phase), Tc2=290 K (incommensurate phase → ferroelastic phase I), and Tc3 = 210 K (ferroelastic phase I → ferroelastic phase II). The parameters of the exciton band (such as the spectral position and the half-width) measured during heating and cooling of the Rb2CdI4 film differ significantly. This is especially true for the incommensurate phase. Upon heating of the incommensurate phase, the domain boundaries become frozen, whereas the cooling of this phase is accompanied by the generation of solitons and their pinning, which, in turn, results in a first-order phase transition at the temperature Tc2. It is revealed that the oscillator strength of the exciton band anomalously increases in the range of existence of commensurate phase I (Tc3<-T<-Tc2) due to ordering of the Rb2CdI4 crystal lattice.  相似文献   

14.
Polarization-optical study of twinning and measurements of the Raman spectra and birefringence in oxyfluoride (NH4)3Ti(O2)F5 were carried out over the temperature range 90–350 K. Phase transitions were detected at temperatures T 01 = 266 K (second-order transition) and T 02 = 225 K (first order). It is assumed that the crystal symmetry is changed as follows: Fm3m ? I4/mmm ? I4/m. Anomalies of the spectral parameters are established in the frequency range of internal vibrations of ammonium ions and Ti(O2)F5 complexes. An analysis of the results shows that the transition at T 01 is likely due to small shifts of the tetrahedral groups from their position on the triad axis and that the transition at T 02 is due to fluorine-oxygen ordering of Ti(O2)F5 complexes.  相似文献   

15.
Formation of a long-range magnetic order is observed at low temperatures in NaCrSi2O6 and NaCrGe2O6 quasi-one-dimensional metal oxide compounds with a pyroxene structure. The first of these compounds, NaCrSi2O6, is an antiferromagnet with the Néel temperature T N =3 K, while the second, NaCrGe2O6, is a ferromagnet with the Curie temperature T C =6 K. From the measurements of magnetization and specific heat of these compounds, the main parameters of their magnetic subsystems are determined. In NaCrSi2O6, a spin-flip transition is observed. A change in the type of magnetic order that accompanies the replacement of Si by Ge can be attributed to a change in the parameters of the competing direct antiferromagnetic Cr-Cr and indirect ferromagnetic Cr-O-Cr interactions in isolated chains of CrO6 octahedra.  相似文献   

16.
Single crystals of the K3H(SO4)2 compound are investigated using X-ray diffraction on Xcalibur S and Bruker diffractometers. The structure of the low-temperature monoclinic phase is refined (space group C2/c, z = 4, a = 14.698(1) Å, b = 5.683(1) Å, c = 9.783(1) Å, β = 103.01(1)°, T = 293 K, Bruker diffractometer), the structural phase transition is revealed, and the structure of the high-temperature trigonal phase is determined (space group R \(\bar 3\) m, z = 3, a = 5.73(1) Å,c = 21.51(1) Å,T = 458 K, Xcalibur diffractometer).  相似文献   

17.
We experimentally determined the fraction of αv of lithium-like boron B2+ and nitrogen N4+ ions in the 4 P 5/2 state having a velocity of 3.6 au that are formed upon capture of two (α2) electrons by hydrogen-like B4+ and N6+ ions and upon capture of one (α1) electron by helium-like (1s2s)1,3 S metastable B3+ and N5+ ions in gaseous media (H2, He, N2, Ar), as well as upon passage through a celluloid film. In light-element media (H2, He), α2 increases proportional to the target thickness T g and reaches a maximum at T g ≈ 1016 atom/cm2 (for B ions, α2 ≈ 0.2 in H2 and α2 ≈ 0.4 in He). For boron and nitrogen ions passing through thin layers of heavier gases (N2, Ne), α2 depends considerably more weakly on T g , and, in Ar, becomes practically constant. It is assumed that, since hydrogen and helium do not contain electrons with parallel spins, autoionizing lithium-like ions are formed as a result of successive (one by one) capture of electrons, whereas, in the heavier gases, simultaneous capture of two electrons predominates. At T g ~ 1015 atom/cm2, the fraction α1 of boron ions is the highest in He, ~0.15, and the lowest in Ar, ~0.07, being in qualitative agreement with calculations.  相似文献   

18.
Single-crystal samples of the Bi2 + xSr2 ? x ? yCu1 + yO6 + δ system revealed anomalous (negative) thermal expansion in the temperature range 10–20 K. Magnetic fields of 1–3 T were found to strongly affect the position and width of the anomaly region. A thermal-expansion singularity was detected at temperatures T≈30–50 K, which may be related to the formation of a pseudogap.  相似文献   

19.
Magnetic, elastic, magnetoelastic, transport, and magnetotransport properties of the Eu0.55Sr0.45MnO3 ceramics have been studied. A break was detected in the temperature dependence of electrical resistivity ρ(T) near the temperature of the magnetic phase transformation (41 K), with the material remaining an insulator down to the lowest measurement temperature reached (ρ=106 Ω cm at 4.2 K). In the interval 4.2≤T≤50 K, the isotherms of the magnetization, volume magnetostriction, and ρ were observed to undergo jumps at the critical field HC1, which decreases with increasing T. For 50≤T≤120 K, the jumps in the above curves persist, but the pattern of the curves changes and HC1 grows with increasing T. The magnetoresistance Δρ/ρ = (ρ H H=0)/ρ H is positive for H<HC1 and passes through a maximum at 41 K, where Δρ/ρ = 6%. For H>HC1, the magnetoresistance is negative, passes through a minimum near 41 K, and reaches a colossal value of 3×105 % at H=45 kOe. The volume magnetostriction is negative and attains a giant value of 4.5×10?4atH=45 kOe. The observed properties are assigned to the existence of three phases in Eu0.55Sr0.45MnO3, namely, a ferromagnetic (FM) phase, in which carriers are concentrated because of the gain in s-d exchange energy, and two antiferromagnetic (AFM) phases of the A and CE types. Their fractional volumes at low temperatures were estimated to be as follows: ~3% of the sample volume is occupied by the FM phase; ~67%, by the CE-type AFM phase; and ~30%, by the A-type AFM phase.  相似文献   

20.
The spin and lattice dynamics of the R2CuO4 quasi-2D antiferromagnetic crystals (R=Pr, Nd, Sm, Eu, Gd) were studied in the millimeter-range electromagnetic wave band. Strong variations of the absorption coefficient were observed to occur at temperatures TT0. Absorption lines of electrical nature due to lattice dynamics were also revealed near the T0 temperatures. The observed anomalies are assumed to originate from phase transitions at TT0, which entail changes in the structural and magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号