首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let \(\mathbb{D}\) be the unit disk in the complex plane ? and let H be a certain weight class of functions holomorphic in \(\mathbb{D}\). We establish conditions under which a given sequence of points A = »k ? \(\mathbb{D}\) is the sequence of zeroes of a holomorphic function from H.  相似文献   

2.
Let φ 1 and φ 2 be holomorphic self-maps of the unit polydisk \(\mathbb{D}^N\), and let u 1 and u 2 be holomorphic functions on \(\mathbb{D}^N\). We characterize the boundedness and compactness of the difference of weighted composition operators W φ1, u1 and W φ2, u2 from the weighted Bergman space \(A_{\vec \alpha }^p\), 0 < p < ∞, \(\vec \alpha = \left( {\alpha _1 , \ldots ,\alpha _{\rm N} } \right)\), α j > ?1, j = 1,..., N, to the weighted-type space H υ of holomorphic functions on the unit polydisk \(\mathbb{D}^N\) in terms of inducing symbols φ 1, φ 2, u 1, and u 2.  相似文献   

3.
In this paper, the authors prove a general Schwarz lemma at the boundary for the holomorphic mapping f between unit balls B and B′in separable complex Hilbert spaces H and H′, respectively. It is found that if the mapping f ∈ C~(1+α)at z_0∈ ?B with f(z_0) = w_0∈ ?B′, then the Fr′echet derivative operator Df(z_0) maps the tangent space Tz_0(?B~n) to Tw_0(?B′), the holomorphic tangent space T_(z_0)~(1,0)(?B~n) to T_(w_0)~(1,0)(?B′),respectively.  相似文献   

4.
Let \(\mathcal {F}_{0}=\{f_{i}\}_{i\in \mathbb {I}_{n_{0}}}\) be a finite sequence of vectors in \(\mathbb {C}^{d}\) and let \(\mathbf {a}=(a_{i})_{i\in \mathbb {I}_{k}}\) be a finite sequence of positive numbers, where \(\mathbb {I}_{n}=\{1,\ldots , n\}\) for \(n\in \mathbb {N}\). We consider the completions of \(\mathcal {F}_{0}\) of the form \(\mathcal {F}=(\mathcal {F}_{0},\mathcal {G})\) obtained by appending a sequence \(\mathcal {G}=\{g_{i}\}_{i\in \mathbb {I}_{k}}\) of vectors in \(\mathbb {C}^{d}\) such that ∥g i 2 = a i for \(i\in \mathbb {I}_{k}\), and endow the set of completions with the metric \(d(\mathcal {F},\tilde {\mathcal {F}}) =\max \{ \,\|g_{i}-\tilde {g}_{i}\|: \ i\in \mathbb {I}_{k}\}\) where \(\tilde {\mathcal {F}}=(\mathcal {F}_{0},\,\tilde {\mathcal {G}})\). In this context we show that local minimizers on the set of completions of a convex potential P φ , induced by a strictly convex function φ, are also global minimizers. In case that φ(x) = x 2 then P φ is the so-called frame potential introduced by Benedetto and Fickus, and our work generalizes several well known results for this potential. We show that there is an intimate connection between frame completion problems with prescribed norms and frame operator distance (FOD) problems. We use this connection and our results to settle in the affirmative a generalized version of Strawn’s conjecture on the FOD.  相似文献   

5.
We study isometric cohomogeneity one actions on the \((n+1)\)-dimensional Minkowski space \(\mathbb {L}^{n+1}\) up to orbit-equivalence. We give examples of isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\) whose orbit spaces are non-Hausdorff. We show that there exist isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\), \(n \ge 3\), which are orbit-equivalent on the complement of an n-dimensional degenerate subspace \(\mathbb {W}^n\) of \(\mathbb {L}^{n+1}\) and not orbit-equivalent on \(\mathbb {W}^n\). We classify isometric cohomogeneity one actions on \(\mathbb {L}^2\) and \(\mathbb {L}^3\) up to orbit-equivalence.  相似文献   

6.
We study generalizations of the classical Bernstein operators on the polynomial spaces \(\mathbb {P}_{n}[a,b]\), where instead of fixing \(\mathbf {1}\) and x, we reproduce exactly \(\mathbf {1}\) and a polynomial \(f_1\), strictly increasing on [ab]. We prove that for sufficiently large n, there always exist generalized Bernstein operators fixing \(\mathbf {1}\) and \(f_1\). These operators are defined by non-decreasing sequences of nodes precisely when \(f_1^\prime > 0\) on (ab), but even if \(f_1^\prime \) vanishes somewhere inside (ab), they converge to the identity.  相似文献   

7.
Let Ω be an open, simply connected, and bounded region in \(\mathbb {R}^{d}\), d ≥ 2, and assume its boundary ?Ω is smooth and homeomorphic to \(\mathbb {S}^{d-1}\). Consider solving an elliptic partial differential equation L u = f(?, u) over Ω with zero Dirichlet boundary value. The function f is a nonlinear function of the solution u. The problem is converted to an equivalent elliptic problem over the open unit ball \(\mathbb {B}^{d}\) in \(\mathbb {R}^{d}\), say \(\widetilde {L}\widetilde {u} =\widetilde {f}(\cdot ,\widetilde {u})\). Then a spectral Galerkin method is used to create a convergent sequence of multivariate polynomials \(\widetilde {u} _{n}\) of degree ≤ n that is convergent to \(\widetilde {u}\). The transformation from Ω to \(\mathbb {B}^{d}\) requires a special analytical calculation for its implementation. With sufficiently smooth problem parameters, the method is shown to be rapidly convergent. For \(u\in C^{\infty } \left (\overline {\Omega }\right ) \) and assuming ?Ω is a C boundary, the convergence of \(\left \Vert \widetilde {u} -\widetilde {u}_{n}\right \Vert _{H^{1}}\) to zero is faster than any power of 1/n. The error analysis uses a reformulation of the boundary value problem as an integral equation, and then it uses tools from nonlinear integral equations to analyze the numerical method. Numerical examples illustrate experimentally an exponential rate of convergence. A generalization to ?Δu + γ u = f(u) with a zero Neumann boundary condition is also presented.  相似文献   

8.
Miloš S. Kurilić 《Order》2017,34(2):235-251
For a partial order \(\mathbb {P}\) having infinite antichains by \(\mathfrak {a}(\mathbb {P})\) we denote the minimal cardinality of an infinite maximal antichain in \(\mathbb {P}\) and investigate how does this cardinal invariant of posets behave in finite products. In particular we show that \(\min \{ \mathfrak {a}(\mathbb {P}),\mathfrak {p} (\text {sq} \mathbb {P}) \} \leq \mathfrak {a} (\mathbb {P}^{n} ) \leq \mathfrak {a} (\mathbb {P})\), for all \(n\in \mathbb {N}\), where \(\mathfrak {p} (\text {sq} \mathbb {P})\) is the minimal size of a centered family without a lower bound in the separative quotient of the poset \(\mathbb {P}\), or \(\mathfrak {p} (\text {sq} \mathbb {P})=\infty \), if there is no such family. So we have \(\mathfrak {a} (\mathbb {P} \times \mathbb {P})=\mathfrak {a} (\mathbb {P})\) whenever \(\mathfrak {p} (\text {sq} \mathbb {P})\geq \mathfrak {a} (\mathbb {P})\) and we show that, in addition, this equality holds for all posets obtained from infinite Boolean algebras of size ≤ø 1 by removing zero, all reversed trees, all atomic posets and, in particular, for all posets of the form \(\langle \mathcal {C} ,\subset \rangle \), where \(\mathcal {C}\) is a family of nonempty closed sets in a compact T 1-space containing all singletons. As a by-product we obtain the following combinatorial statement: If X is an infinite set and {A i ×B i :iI} an infinite partition of the square X 2, then at least one of the families {A i :iI} and {B i :iI} contains an infinite partition of X.  相似文献   

9.
Consider a max-stable process of the form \(\eta (t) = \max _{i\in \mathbb {N}} U_{i} \mathrm {e}^{\langle X_{i}, t\rangle - \kappa (t)}\), \(t\in \mathbb {R}^{d}\), where \(\{U_{i}, i\in \mathbb {N}\}\) are points of the Poisson process with intensity u ?2du on (0,), X i , \(i\in \mathbb {N}\), are independent copies of a random d-variate vector X (that are independent of the Poisson process), and \(\kappa :\mathbb {R}^{d} \to \mathbb {R}\) is a function. We show that the process η is stationary if and only if X has multivariate normal distribution and κ(t)?κ(0) is the cumulant generating function of X. In this case, η is a max-stable process introduced by R. L. Smith.  相似文献   

10.
Let A :=(A_1, A_2) be a pair of expansive dilations and φ : R~n×R~m×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space H~φ_A(R~n× R~m) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the g_λ~*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of H~φ_A(R~n× R~m) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from H~φ_A(R~n× R~m) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from H~φ_A(R~n× R~m) to L~φ(R~n× R~m)and from H~φ_A(R~n×R~m) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on R~n× R~m and are new even for classical product Orlicz-Hardy spaces.  相似文献   

11.
Recently, physicists are interested in 6-dimensional physics including the massless field operators on Lorentzian space \(\mathbb R^{5,1}\). The elliptic version \(\mathcal {D}_{k}\) of these operators coincides with the higher spin massless field operators on \(\mathbb R^{6}\) introduced by Sou?ek earlier. The embedding of \(\mathbb R^{6}\) into the space of complex antisymmetric matrices allows us to use two-component notation, generating the Penrose two-spinor notation for dimension 4, which makes the spinor calculus on \(\mathbb R^6\) more concrete and explicit. A function annihilated by \(\mathcal {D}_{k}\) is called k-monogenic. Applying the Penrose integral formula, which can be checked by direct differentiation, we give infinite number of such k-monogenic polynomials for fixed k. So the function theory of k-monogenic functions is abundant and interesting.  相似文献   

12.
We prove that there are cocompact lattices Γ in \(\text {SL}(2,\mathbb {C})\) with the property that there are holomorphic line bundles L on \(\text {SL}(2,\mathbb {C})/{\Gamma }\) with c 1(L) = 0 such that L does not admit any unitary flat connection.  相似文献   

13.
Suppose that \(G =\mathbb{S}^1\) acts freely on a finitistic space X whose (mod p) cohomology ring is isomorphic to that of a lens space \(L^{2m-1}(p;q_1,\ldots,q_m)\) or \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\). The mod p index of the action is defined to be the largest integer n such that α n ?≠?0, where \(\alpha \,\epsilon\, H^2(X/G;\mathbb{Z}_p)\) is the nonzero characteristic class of the \(\mathbb{S}^1\)-bundle \(\mathbb{S}^1\hookrightarrow X\rightarrow X/G\). We show that the mod p index of a free action of G on \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\) is p???1, when it is defined. Using this, we obtain a Borsuk–Ulam type theorem for a free G-action on \(\mathbb{S}^1\times \mathbb{C}P^{m-1}\). It is note worthy that the mod p index for free G-actions on the cohomology lens space is not defined.  相似文献   

14.
Friedrich Wehrung 《Order》2018,35(1):111-132
A partial lattice P is ideal-projective, with respect to a class \(\mathcal {C}\) of lattices, if for every \(K\in \mathcal {C}\) and every homomorphism φ of partial lattices from P to the ideal lattice of K, there are arbitrarily large choice functions f:PK for φ that are also homomorphisms of partial lattices. This extends the traditional concept of (sharp) transferability of a lattice with respect to \(\mathcal {C}\). We prove the following: (1) A finite lattice P, belonging to a variety \(\mathcal {V}\), is sharply transferable with respect to \(\mathcal {V}\) iff it is projective with respect to \(\mathcal {V}\) and weakly distributive lattice homomorphisms, iff it is ideal-projective with respect to \(\mathcal {V}\), (2) Every finite distributive lattice is sharply transferable with respect to the class \(\mathcal {R}_{\text {mod}}\) of all relatively complemented modular lattices, (3) The gluing D 4 of two squares, the top of one being identified with the bottom of the other one, is sharply transferable with respect to a variety \(\mathcal {V}\) iff \(\mathcal {V}\) is contained in the variety \(\mathcal {M}_{\omega }\) generated by all lattices of length 2, (4) D 4 is projective, but not ideal-projective, with respect to \(\mathcal {R}_{\text {mod}}\) , (5) D 4 is transferable, but not sharply transferable, with respect to the variety \(\mathcal {M}\) of all modular lattices. This solves a 1978 problem of G. Grätzer, (6) We construct a modular lattice whose canonical embedding into its ideal lattice is not pure. This solves a 1974 problem of E. Nelson.  相似文献   

15.
For P ? \(\mathbb{F}_2 \)[z] with P(0) = 1 and deg(P) ≥ 1, let \(\mathcal{A}\) = \(\mathcal{A}\)(P) (cf. [4], [5], [13]) be the unique subset of ? such that Σ n≥0 p(\(\mathcal{A}\), n)z n P(z) (mod 2), where p(\(\mathcal{A}\), n) is the number of partitions of n with parts in \(\mathcal{A}\). Let p be an odd prime and P ? \(\mathbb{F}_2 \)[z] be some irreducible polynomial of order p, i.e., p is the smallest positive integer such that P(z) divides 1 + z p in \(\mathbb{F}_2 \)[z]. In this paper, we prove that if m is an odd positive integer, the elements of \(\mathcal{A}\) = \(\mathcal{A}\)(P) of the form 2 k m are determined by the 2-adic expansion of some root of a polynomial with integer coefficients. This extends a result of F. Ben Saïd and J.-L. Nicolas [6] to all primes p.  相似文献   

16.
For the extended Dirichlet space \(\mathcal {F}_{e}\) of a general irreducible recurrent regular Dirichlet form \((\mathcal {E},\mathcal {F})\) on L 2(E;m), we consider the family \(\mathbb {G}(\mathcal {E})=\{X_{u};u\in \mathcal {F}_{e}\}\) of centered Gaussian random variables defined on a probability space \(({\Omega }, \mathcal {B}, \mathbb {P})\) indexed by the elements of \(\mathcal {F}_{e}\) and possessing the Dirichlet form \(\mathcal {E}\) as its covariance. We formulate the Markov property of the Gaussian field \(\mathbb {G}(\mathcal {E})\) by associating with each set A ? E the sub-σ-field σ(A) of \(\mathcal {B}\) generated by X u for every \(u\in \mathcal {F}_{e}\) whose spectrum s(u) is contained in A. Under a mild absolute continuity condition on the transition function of the Hunt process associated with \((\mathcal {E}, \mathcal {F})\), we prove the equivalence of the Markov property of \(\mathbb {G}(\mathcal {E})\) and the local property of \((\mathcal {E},\mathcal {F})\). One of the key ingredients in the proof is in that we construct potentials of finite signed measures of zero total mass and show that, for any Borel set B with m(B) >?0, any function \(u\in \mathcal {F}_{e}\) with s(u) ? B can be approximated by a sequence of potentials of measures supported by B.  相似文献   

17.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

18.
In this paper, by using the “twisting technique” we obtain a class of new modules A b over the Witt algebras \(\mathcal {W}_{n}\) from modules A over the Weyl algebras \(\mathcal {K}_{n}\) (of Laurent polynomials) for any \(b\in \mathbb {C}\). We give necessary and sufficient conditions for A b to be irreducible, and determine necessary and sufficient conditions for two such irreducible \(\mathcal {W}_{n}\)-modules to be isomorphic. Since \(\mathfrak {sl}_{n+1}(\mathbb {C})\) is a subalgebra of \(\mathcal {W}_{n}\), all the above irreducible \(\mathcal {W}_{n}\)-modules A b can be considered as \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules. For a class of such \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules, denoted by Ω1?a (λ 1, λ 2, ? ,λ n ) where \(a\in \mathbb {C}, \lambda _{1},\lambda _{2},\cdots ,\lambda _{n} \in \mathbb {C}^{*}\), we determine necessary and sufficient conditions for these \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules to be irreducible. If the \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-module Ω1?a (λ 1, λ 2,? ,λ n ) is reducible, we prove that it has a unique nontrivial submodule W 1?a (λ 1, λ 2,...λ n ) and the quotient module is the finite dimensional \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-module with highest weight mΛ n for some non-negative integer \(m\in \mathbb {Z}_{+}\). We also determine necessary and sufficient conditions for two \(\mathfrak {sl}_{n+1}(\mathbb {C})\)-modules of the form Ω1?a (λ 1, λ 2,? ,λ n ) or of the form W 1?a (λ 1, λ 2,...λ n ) to be isomorphic.  相似文献   

19.
Let \({\mathcal L}\equiv-\Delta+V\) be the Schrödinger operator in \({{\mathbb R}^n}\), where V is a nonnegative function satisfying the reverse Hölder inequality. Let ρ be an admissible function modeled on the known auxiliary function determined by V. In this paper, the authors characterize the localized Hardy spaces \(H^1_\rho({{\mathbb R}^n})\) in terms of localized Riesz transforms and establish the boundedness on the BMO-type space \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) of these operators as well as the boundedness from \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) to \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) of their corresponding maximal operators, and as a consequence, the authors obtain the Fefferman–Stein decomposition of \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) via localized Riesz transforms. When ρ is the known auxiliary function determined by V, \({\mathop\mathrm{BMO_\rho({\mathbb R}^n)}}\) is just the known space \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\), and \({\mathop\mathrm{BLO_\rho({\mathbb R}^n)}}\) in this case is correspondingly denoted by \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\). As applications, when n?≥?3, the authors further obtain the boundedness on \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) of Riesz transforms \(\nabla{\mathcal L}^{-1/2}\) and their adjoint operators, as well as the boundedness from \(\mathop\mathrm{BMO}_{\mathcal L}({{\mathbb R}^n})\) to \(\mathop\mathrm{BLO}_{\mathcal L}({{\mathbb R}^n})\) of their maximal operators. Also, some endpoint estimates of fractional integrals associated to \({\mathcal L}\) are presented.  相似文献   

20.
In this paper, we study complete oriented f -minimal hypersurfaces properly immersed in a cylinder shrinking soliton \((\mathbb{S}^n \times \mathbb{R},\bar g,f)\).We prove that such hypersurface with L f -index one must be either \(\mathbb{S}^n \times \{ 0\}\) or \(\mathbb{S}^{n - 1} \times \mathbb{R}\), where \({S}^{n - 1}\) denotes the sphere in \(\mathbb{S}^n\) of the same radius. Also we prove a pinching theorem for them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号