首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We provide conditions for a linear map of the form \(C_{R,T}(S)=RST\) to be q-frequently hypercyclic on algebras of operators on separable Banach spaces. In particular, if R is a bounded operator satisfying the q-frequent hypercyclicity criterion, then the map \(C_{R}(S)=RSR^*\) is shown to be q-frequently hypercyclic on the space \(\mathcal {K}(H)\) of all compact operators and the real topological vector space \(\mathcal {S}(H)\) of all self-adjoint operators on a separable Hilbert space H. Further we provide a condition for \(C_{R,T}\) to be q-frequently hypercyclic on the Schatten von Neumann classes \(S_p(H)\). We also characterize frequent hypercyclicity of \(C_{M^*_\varphi ,M_\psi }\) on the trace-class of the Hardy space, where the symbol \(M_\varphi \) denotes the multiplication operator associated to \(\varphi \).  相似文献   

2.
Let \(\mathcal{U}\) be the class of all unipotent monoids and \(\mathcal{B}\) the variety of all bands. We characterize the Malcev product \(\mathcal{U} \circ \mathcal{V}\) where \(\mathcal{V}\) is a subvariety of \(\mathcal{B}\) low in its lattice of subvarieties, \(\mathcal{B}\) itself and the subquasivariety \(\mathcal{S} \circ \mathcal{RB}\), where \(\mathcal{S}\) stands for semilattices and \(\mathcal{RB}\) for rectangular bands, in several ways including by a set of axioms. For members of some of them we describe the structure as well. This succeeds by using the relation \(\widetilde{\mathcal{H}}= \widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}\), where \(a\;\,\widetilde{\mathcal{L}}\;\,b\) if and only if a and b have the same idempotent right identities, and \(\widetilde{\mathcal{R}}\) is its dual.We also consider \((\mathcal{U} \circ \mathcal{RB}) \circ \mathcal{S}\) which provides the motivation for this study since \((\mathcal{G} \circ \mathcal{RB}) \circ \mathcal{S}\) coincides with completely regular semigroups, where \(\mathcal{G}\) is the variety of all groups. All this amounts to a generalization of the latter: \(\mathcal{U}\) instead of \(\mathcal{G}\).  相似文献   

3.
Let \(\mathcal {U}=\{U(t,s)\}_{t\ge s\ge 0}\) be a strongly continuous and exponentially bounded evolution family acting on a complex Banach space X and let \(\mathcal {X}\) be a certain Banach function space of X-valued functions. We prove that the growth bound of the family \(\mathcal {U}\) is less than or equal to \(-\frac{1}{c(\mathcal {U}, \mathcal {X})}\) provided that the convolution operator \(f\mapsto \mathcal {U}*f\) acts on \(\mathcal {X}.\) It is well known that under the latter assumption, the convolution operator is bounded and then \(c(\mathcal {U}, \mathcal {X})\) denotes (ad-hoc) its norm in \(\mathcal {L}(\mathcal {X}).\) As a consequence, we prove that if \(\sup \nolimits _{s\ge 0}\int \nolimits _{s}^\infty \Vert U(t,s)\Vert dt=u_1(\mathcal {U})<\infty ,\) then \(\omega _0(\mathcal {U})u_1(\mathcal {U})\le -1.\) Finally, we give an example showing that the accuracy of the estimates may be quite accurate.  相似文献   

4.
Let \(\mathcal {R}\) be a prime ring, \(\mathcal {Z(R)}\) its center, \(\mathcal {C}\) its extended centroid, \(\mathcal {L}\) a Lie ideal of \(\mathcal {R}, \mathcal {F}\) a generalized skew derivation associated with a skew derivation d and automorphism \(\alpha \). Assume that there exist \(t\ge 1\) and \(m,n\ge 0\) fixed integers such that \( vu = u^m\mathcal {F}(uv)^tu^n\) for all \(u,v \in \mathcal {L}\). Then it is shown that either \(\mathcal {L}\) is central or \(\mathrm{char}(\mathcal {R})=2, \mathcal {R}\subseteq \mathcal {M}_2(\mathcal {C})\), the ring of \(2\times 2\) matrices over \(\mathcal {C}, \mathcal {L}\) is commutative and \(u^2\in \mathcal {Z(R)}\), for all \(u\in \mathcal {L}\). In particular, if \(\mathcal {L}=[\mathcal {R,R}]\), then \(\mathcal {R}\) is commutative.  相似文献   

5.
Let \(\mathcal {C}\subset \mathbb {Q}^p_+\) be a rational cone. An affine semigroup \(S\subset \mathcal {C}\) is a \(\mathcal {C}\)-semigroup whenever \((\mathcal {C}\setminus S)\cap \mathbb {N}^p\) has only a finite number of elements. In this work, we study the tree of \(\mathcal {C}\)-semigroups, give a method to generate it and study the \(\mathcal {C}\)-semigroups with minimal embedding dimension. We extend Wilf’s conjecture for numerical semigroups to \(\mathcal {C}\)-semigroups and give some families of \(\mathcal {C}\)-semigroups fulfilling the extended conjecture. Other conjectures formulated for numerical semigroups are also studied for \(\mathcal {C}\)-semigroups.  相似文献   

6.
Let \(\mathfrak {g}\) be a simple complex Lie algebra and let \(\mathfrak {t} \subset \mathfrak {g}\) be a toral subalgebra of \(\mathfrak {g}\). As a \(\mathfrak {t}\)-module \(\mathfrak {g}\) decomposes as
$$\mathfrak{g} = \mathfrak{s} \oplus \left( \oplus_{\nu \in \mathcal{R}}~ \mathfrak{g}^{\nu}\right)$$
where \(\mathfrak {s} \subset \mathfrak {g}\) is the reductive part of a parabolic subalgebra of \(\mathfrak {g}\) and \(\mathcal {R}\) is the Kostant root system associated to \(\mathfrak {t}\). When \(\mathfrak {t}\) is a Cartan subalgebra of \(\mathfrak {g}\) the decomposition above is nothing but the root decomposition of \(\mathfrak {g}\) with respect to \(\mathfrak {t}\); in general the properties of \(\mathcal {R}\) resemble the properties of usual root systems. In this note we study the following problem: “Given a subset \(\mathcal {S} \subset \mathcal {R}\), is there a parabolic subalgebra \(\mathfrak {p}\) of \(\mathfrak {g}\) containing \(\mathcal {M} = \oplus _{\nu \in \mathcal {S}} \mathfrak {g}^{\nu }\) and whose reductive part equals \(\mathfrak {s}\)?”. Our main results is that, for a classical simple Lie algebra \(\mathfrak {g}\) and a saturated \(\mathcal {S} \subset \mathcal {R}\), the condition \((\text {Sym}^{\cdot }(\mathcal {M}))^{\mathfrak {s}} = \mathbb {C}\) is necessary and sufficient for the existence of such a \(\mathfrak {p}\). In contrast, we show that this statement is no longer true for the exceptional Lie algebras F4,E6,E7, and E8. Finally, we discuss the problem in the case when \(\mathcal {S}\) is not saturated.
  相似文献   

7.
A bounded linear operator T acting on a Hilbert space is said to have orthogonality property \(\mathcal {O}\) if the subspaces \(\ker (T-\alpha )\) and \(\ker (T-\beta )\) are orthogonal for all \(\alpha , \beta \in \sigma _p(T)\) with \(\alpha \ne \beta \). In this paper, the authors investigate the compact perturbations of operators with orthogonality property \(\mathcal {O}\). We give a sufficient and necessary condition to determine when an operator T has the following property: for each \(\varepsilon >0\), there exists \(K\in \mathcal {K(H)}\) with \(\Vert K\Vert <\varepsilon \) such that \(T+K\) has orthogonality property \(\mathcal {O}\). Also, we study the stability of orthogonality property \(\mathcal {O}\) under small compact perturbations and analytic functional calculus.  相似文献   

8.
We consider the quantum symmetric pair \((\mathcal {U}_{q}(\mathfrak {su}(3)), \mathcal {B})\) where \(\mathcal {B}\) is a right coideal subalgebra. We prove that all finite-dimensional irreducible representations of \(\mathcal {B}\) are weight representations and are characterised by their highest weight and dimension. We show that the restriction of a finite-dimensional irreducible representation of \(\mathcal {U}_{q}(\mathfrak {su}(3))\) to \(\mathcal {B}\) decomposes multiplicity free into irreducible representations of \(\mathcal {B}\). Furthermore we give explicit expressions for the highest weight vectors in this decomposition in terms of dual q-Krawtchouk polynomials.  相似文献   

9.
Let \(\varphi \) be an arbitrary linear-fractional self-map of the unit disk \({\mathbb {D}}\) and consider the composition operator \(C_{-1, \varphi }\) and the Toeplitz operator \(T_{-1,z}\) on the Hardy space \(H^2\) and the corresponding operators \(C_{\alpha , \varphi }\) and \(T_{\alpha , z}\) on the weighted Bergman spaces \(A^2_{\alpha }\) for \(\alpha >-1\). We prove that the unital C\(^*\)-algebra \(C^*(T_{\alpha , z}, C_{\alpha , \varphi })\) generated by \(T_{\alpha , z}\) and \(C_{\alpha , \varphi }\) is unitarily equivalent to \(C^*(T_{-1, z}, C_{-1, \varphi }),\) which extends a known result for automorphism-induced composition operators. For maps \(\varphi \) that are not automorphisms of \({\mathbb {D}}\), we show that \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })\) is unitarily equivalent to \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})\), where \({\mathcal {K}}_{\alpha }\) and \({\mathcal {K}}_{-1}\) denote the ideals of compact operators on \(A^2_{\alpha }\) and \(H^2\), respectively, and apply existing structure theorems for \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})/{\mathcal {K}}_{-1}\) to describe the structure of \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })/\mathcal {K_{\alpha }}\), up to isomorphism. We also establish a unitary equivalence between related weighted composition operators induced by maps \(\varphi \) that fix a point on the unit circle.  相似文献   

10.
We introduce a new generalization of Alan Day’s doubling construction. For ordered sets \(\mathcal {L}\) and \(\mathcal {K}\) and a subset \(E \subseteq \ \leq _{\mathcal {L}}\) we define the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) arising from inflation of \(\mathcal {L}\) along E by \(\mathcal {K}\). Under the restriction that \(\mathcal {L}\) and \(\mathcal {K}\) are finite lattices, we find those subsets \(E \subseteq \ \leq _{\mathcal {L}}\) such that the ordered set \(\mathcal {L} \star _{E} \mathcal {K}\) is a lattice. Finite lattices that can be constructed in this way are classified in terms of their congruence lattices.A finite lattice is binary cut-through codable if and only if there exists a 0?1 spanning chain \(\left \{\theta _{i}\colon 0 \leq i \leq n \right \}\) in \(Con(\mathcal {L})\) such that the cardinality of the largest block of ?? i /?? i?1 is 2 for every i with 1≤in. These are exactly the lattices that can be constructed by inflation from the 1-element lattice using only the 2-element lattice. We investigate the structure of binary cut-through codable lattices and describe an infinite class of lattices that generate binary cut-through codable varieties.  相似文献   

11.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

12.
13.
We show that several theorems about Polish spaces, which depend on the axiom of choice (\(\mathcal {AC}\)), have interesting corollaries that are theorems of the theory \(\mathcal {ZF} + \mathcal {DC}\), where \(\mathcal {DC}\) is the axiom of dependent choices. Surprisingly it is natural to use the full \(\mathcal {AC}\) to prove the existence of these proofs; in fact we do not even know the proofs in \(\mathcal {ZF} + \mathcal {DC}\). Let \(\mathcal {AD}\) denote the axiom of determinacy. We show also, in the theory \(\mathcal {ZF} + \mathcal {AD} + V = L(\mathbb {R})\), a theorem which strenghtens and generalizes the theorem of Drinfeld (Funct Anal Appl 18:245–246, 1985) and Margulis (Monatshefte Math 90:233–235, 1980) about the unicity of Lebesgue’s measure. This generalization is false in \(\mathcal {ZFC}\), but assuming the existence of large enough cardinals it is true in the model \(\langle L(\mathbb {R}),\in \rangle \).  相似文献   

14.
A completely regular semigroup is a (disjoint) union of its (maximal) subgroups. We consider it here with the unary operation of inversion within its maximal subgroups. Their totality \(\mathcal {C}\mathcal {R}\) forms a variety whose lattice of subvarieties is denoted by \(\mathcal {L}(\mathcal {C}\mathcal {R})\). On it, one defines the relations \(\mathbf {B}^\wedge \) and \(\mathbf {B}^\vee \) by
$$\begin{aligned} \begin{array}{lll} \mathcal {U}\ \mathbf {B}^\wedge \ \mathcal {V}&{} \Longleftrightarrow &{} \mathcal {U}\cap \mathcal {B} =\mathcal {V}\cap \mathcal {B}, \\ \mathcal {U}\ \mathbf {B}^\vee \ \mathcal {V}&{} \Longleftrightarrow &{} \mathcal {U}\vee \mathcal {B} =\mathcal {V}\vee \mathcal {B} , \end{array} \end{aligned}$$
respectively, where \(\mathcal {B}\) denotes the variety of all bands. This is a study of the interplay between the \(\cap \)-subsemilatice \(\triangle \) of \(\mathcal {L}(\mathcal {C}\mathcal {R})\) of upper ends of \(\mathbf {B}^\wedge \)-classes and their \(\mathbf {B}^\vee \)-classes. The main tool is the concept of a ladder and their \(\mathbf {B}^\vee \)-classes, an indispensable part of the important Polák’s theorem providing a construction for the join of varieties of completely regular semigroups. The paper includes the tables of ladders of the upper ends of most \(\mathbf {B}^\wedge \)-classes. Canonical varieties consist of two ascending countably infinite chains which generate most of the upper ends of \(\mathbf {B}^\wedge \)-classes.
  相似文献   

15.
For fixed real numbers \(c>0,\)\(\alpha >-\frac{1}{2},\) the finite Hankel transform operator, denoted by \(\mathcal {H}_c^{\alpha }\) is given by the integral operator defined on \(L^2(0,1)\) with kernel \(K_{\alpha }(x,y)= \sqrt{c xy} J_{\alpha }(cxy).\) To the operator \(\mathcal {H}_c^{\alpha },\) we associate a positive, self-adjoint compact integral operator \(\mathcal Q_c^{\alpha }=c\, \mathcal {H}_c^{\alpha }\, \mathcal {H}_c^{\alpha }.\) Note that the integral operators \(\mathcal {H}_c^{\alpha }\) and \(\mathcal Q_c^{\alpha }\) commute with a Sturm-Liouville differential operator \(\mathcal D_c^{\alpha }.\) In this paper, we first give some useful estimates and bounds of the eigenfunctions \(\varphi ^{(\alpha )}_{n,c}\) of \(\mathcal H_c^{\alpha }\) or \(\mathcal Q_c^{\alpha }.\) These estimates and bounds are obtained by using some special techniques from the theory of Sturm-Liouville operators, that we apply to the differential operator \(\mathcal D_c^{\alpha }.\) If \((\mu _{n,\alpha }(c))_n\) and \(\lambda _{n,\alpha }(c)=c\, |\mu _{n,\alpha }(c)|^2\) denote the infinite and countable sequence of the eigenvalues of the operators \(\mathcal {H}_c^{(\alpha )}\) and \(\mathcal Q_c^{\alpha },\) arranged in the decreasing order of their magnitude, then we show an unexpected result that for a given integer \(n\ge 0,\)\(\lambda _{n,\alpha }(c)\) is decreasing with respect to the parameter \(\alpha .\) As a consequence, we show that for \(\alpha \ge \frac{1}{2},\) the \(\lambda _{n,\alpha }(c)\) and the \(\mu _{n,\alpha }(c)\) have a super-exponential decay rate. Also, we give a lower decay rate of these eigenvalues. As it will be seen, the previous results are essential tools for the analysis of a spectral approximation scheme based on the eigenfunctions of the finite Hankel transform operator. Some numerical examples will be provided to illustrate the results of this work.  相似文献   

16.
Let \(\mathcal{A}\) be a representation finite algebra over finite field k. In this note we first show that the existence of Hall polynomials for \(\mathcal{A}\) equivalent to the existence of the Hall polynomial \(\varphi^{M}_{N L}\) for each \(M, L \in mod\mathcal{A}\) and \(N\in ind\mathcal{A}\). Then we show that for a basic connected Nakayama algebra \(\mathcal{A}\), \(\mathcal{H}(\mathcal{A})=\mathcal{L}(\mathcal{A})\) and Hall polynomials exist for this algebra. We also provide another proof of the existence of Hall polynomials for the representation directed split algebras.  相似文献   

17.
The paper is devoted to the study of intrinsic geometry of a Cartan distribution \(\mathcal{M}\) in projective space P2m . We essentially use the hyperband distribution \(\mathcal{H}\) and P2m associated with \(\mathcal{M}\). Using the duality theory, we construct, in the 4th differential neighborhood, a series of normalizations of \(\mathcal{M}\). We also consider dual affine connections \(\mathop \nabla \limits^1 \) and \(\mathop \nabla \limits^2 \) induced by the dual normalization of the Cartan distribution \(\mathcal{M}\).  相似文献   

18.
Let \({\mathcal B}_{p,w}\) be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space \(L^p(\mathbb {R},w)\), where \(p\in (1,\infty )\) and w is a Muckenhoupt weight. We study the Banach subalgebra \(\mathfrak {A}_{p,w}\) of \({\mathcal B}_{p,w}\) generated by all multiplication operators aI (\(a\in \mathrm{PSO}^\diamond \)) and all convolution operators \(W^0(b)\) (\(b\in \mathrm{PSO}_{p,w}^\diamond \)), where \(\mathrm{PSO}^\diamond \subset L^\infty (\mathbb {R})\) and \(\mathrm{PSO}_{p,w}^\diamond \subset M_{p,w}\) are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of \(\mathbb {R}\cup \{\infty \}\), and \(M_{p,w}\) is the Banach algebra of Fourier multipliers on \(L^p(\mathbb {R},w)\). For any Muckenhoupt weight w, we study the Fredholmness in the Banach algebra \({\mathcal Z}_{p,w}\subset \mathfrak {A}_{p,w}\) generated by the operators \(aW^0(b)\) with slowly oscillating data \(a\in \mathrm{SO}^\diamond \) and \(b\in \mathrm{SO}^\diamond _{p,w}\). Then, under some condition on the weight w, we complete constructing a Fredholm symbol calculus for the Banach algebra \(\mathfrak {A}_{p,w}\) in comparison with Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 74:377–415, 2012) and Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 75:49–86, 2013) and establish a Fredholm criterion for the operators \(A\in \mathfrak {A}_{p,w}\) in terms of their symbols. A new approach to determine local spectra is found.  相似文献   

19.
20.
Let \(\mathcal {V}\) be the variety of square-increasing idempotent semirings. Its members can be viewed as semilattice-ordered monoids satisfying \(x\le x^{2}\). We show that the universal theory of \(\mathcal {V}\) is decidable. In order to prove this result, we investigate the class \(\mathcal {Q}\) whose members are ordered-monoid subreducts of members from \(\mathcal {V}\). In particular, we prove that finitely generated members from \(\mathcal {Q}\) are well-partially-ordered and residually finite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号