首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The results are presented of the computer simulation of heat distribution in the W/(La,Ce)B6/W multi-layer sensor of the thermoelectric detector after the absorption of single photons with the energies 1–100 eV. The influence of the choice of computer simulation parameters on the revealing of the peculiarities of heat transmission processes arising in the sensor of detector depending on the photon energy, the sensor geometry, the absorption area of the absorber surface and the depth of photon thermalization is investigated in details. The energy resolution and the count rate of sensor are evaluated. It is shown that the multi-layer sensor with the thermoelectric (La,Ce)B6 is capable to register a single photon in a wide range of the electromagnetic spectrum at 0.5 K; it has an advantages as compared with the sensor based on the CeB6 with the operating temperature 9 K, and has perspectives to be used in the science and technology.  相似文献   

2.
The results of computer simulation of heat propagation processes in the three-layer detection pixel with the superconducting layers of thermoelectric detector after the absorption of single photons energy of 1–1000 eV are presented. We consider the different geometries of the detection pixel consisting of CeB6 or (La,Ce)B6 thermoelectric sensor, absorber and heat sink of Nb, Pb or YBCO superconductors. The computations based on the heat conduction equation from the limited volume are carried out by the three-dimensional matrix method for differential equations. It is shown that by changing the materials and dimension of the detection pixel elements, as well as the operating temperature of the detector enables one to obtain the detector to register the photons within the given spectral range, required energy resolution, and counting rate. Such a detector has a number of advantages that allow one to consider the thermoelectric detector as a real alternative to the most promising single photon detectors.  相似文献   

3.
The results of computer simulation of heat propagation processes in the three-layer detection pixel of single-photon thermoelectric detector after the absorption of single photons with the energies 0.5–4.13 eV are presented. The various geometries of the detection pixel consisting of rareearth hexaborides are considered. The lanthanum hexaboride (LaB6) is chosen as the absorber material, and for the materials of thermoelectric sensor the cerium (CeB6) and lanthanum–cerium (La0.99Ce0.01) B6 hexaborides are chosen. The problem is solved to achieve the high system efficiency of thermoelectric detector for the detection of photons in the wavelength range from the UV to the near IR. The computer modeling was carried out based on the equation of heat propagation from the limited volume with the use of three-dimensional matrix method for differential equations. It is shown that a single-photon thermoelectric detector with a three-layer detection pixel made only of hexaborides will have the gigahertz count rate, high-energy resolution, and detection efficiency exceeding 90%. Taking into account the advantages of the three-layer detection pixel compared to the single-layer it can be argued that the three-layer detection pixel of the thermoelectric detector has the great prospects to solve a number of single-photon detection tasks.  相似文献   

4.
The possibility of W/CeB6/W heterostructure preparation on Al2O3, AlN, Si, and W substrates by electron-beam evaporation method was investigated. The conditions for preparation of W thin films on dielectric substrates and CeB6 films, as well as of stoichiometric CeB6 films on W films, dielectric and tungsten substrates are determined. The reflection spectra of W films, the results of X-ray diffractometry, X-ray microanalysis, and electron microscopy of W and CeB6 films are presented. W/CeB6/W heterostructures of various configurations and sizes are produced. It was shown by means of computer simulation that at the detection of 6–50 eV photons, a detector with W/CeB6/W heterostructure-based sensitive element may provide microvolt level signal at terahertz count rate. The obtained results serve as the basis for creation of a prototype of a sensitive element of single-photon thermoelectric detector.  相似文献   

5.
Thermoelectric FeSb2 films were produced by pulsed laser deposition on silica substrates in a low-pressure Ar environment. The growth conditions for near phase-pure FeSb2 films were confirmed to be optimized at a substrate temperature of 425°C, an Ar pressure of 2 Pa, and deposition time of 3 h by ablating specifically prepared compound targets made of Fe and Sb powders in atomic ratio of 1:4. The thermoelectric transport properties of FeSb2 films were investigated. Pulsed laser deposition was demonstrated as a method for production of good-quality FeSb2 films.  相似文献   

6.
The results of computer simulation of the heat propagation processes in the single-layer detection pixel of single-photon thermoelectric detector after absorption of photons with the energy of 0.8 eV are presented. The various geometries of detection pixel made from rare-earth hexaborides are considered. As the material of absorber, the lanthanum hexaboride (LaB6) is chosen, and as the materials of thermoelectric sensor, the hexaborides of cerium (CeB6), and lanthanum–cerium (La0.99 Ce0.01)B6 are used. The choice of LaB6 as an absorber material had the goal to ensure a high system efficiency of photons detection in the near IR region. The computer modeling was carried out based on the equation of heat propagation from a limited volume, using the three-dimensional matrix method for differential equations. It is shown that the single-photon thermoelectric detector with the single-layer detection pixel made only of hexaborides will have the count rates of GHz and the higher detection efficiency as compared with the sensitive element with the heavy metal as an absorber. In addition, such a sensitive element is more stable mechanically when it is cooled to the operating temperatures of 0.5 and 9 K.  相似文献   

7.
The results of computer simulation of the processes of heat propagation inside the multilayer sensor of thermoelectric detector after absorbing the single photons with the energies 1 keV and 100 eV are presented. The variants are considered for different geometries of the sensor which consists of the tungsten absorber and of the thermoelectric layer of the cerium hexaboride. The differences of temporal dependence of the signal arising in the thermoelectric layer when the photon is absorbed in the various areas of absorber are studied in details. The energy resolution and the count rate of the sensor are estimated. It is shown that the multilayer sensors have a number of advantages as compared to the single-layered, and their use is promising in the various fields of science and technology.  相似文献   

8.
The first application of a pnCCD detector for X‐ray scattering experiments using white synchrotron radiation at BESSY II is presented. A Cd arachidate multilayer was investigated in reflection geometry within the energy range 7 keV < E < 35 keV. At fixed angle of incidence the two‐dimensional diffraction pattern containing several multilayer Bragg peaks and respective diffuse‐resonant Bragg sheets were observed. Since every pixel of the detector is able to determine the energy of every incoming photon with a resolution ΔE/E? 10?2, a three‐dimensional dataset is finally obtained. In order to achieve this energy resolution the detector was operated in the so‐called single‐photon‐counting mode. A full dataset was evaluated taking into account all photons recorded within 105 detector frames at a readout rate of 200 Hz. By representing the data in reciprocal‐space coordinates, it becomes obvious that this experiment with the pnCCD detector provides the same information as that obtained by combining a large number of monochromatic scattering experiments using conventional area detectors.  相似文献   

9.
We consider the prospects of crystals of cerium hexaboride CeB6 and lanthanum-cerium hexaborides (La,Ce)B6 as a sensitive element in the so-called QVD thermoelectric single-photon detectors, operating at cryogenic temperatures. We have collected and analyzed the values of thermoelectric parameters of CeB6 and (La,Ce)B6 available in the literature. On this basis we calculated the energy resolution and photon count rate of the future thermoelectric QVD detectors. We conclude that the detectors on CeB6 can register a single X-ray photon, and detectors on (La,Ce)B6 — a single UV photon.  相似文献   

10.
A GE Revolution 41RT flat‐panel detector (GE 41RT) from GE Healthcare (GE) has been in operation at the Advanced Photon Source for over two years. The detector has an active area of 41 cm × 41 cm with 200 µm × 200 µm pixel size. The nominal working photon energy is around 80 keV. The physical set‐up and utility software of the detector system are discussed in this article. The linearity of the detector response was measured at 80.7 keV. The memory effect of the detector element, called lag, was also measured at different exposure times and gain settings. The modulation transfer function was measured in terms of the line‐spread function using a 25 µm × 1 cm tungsten slit. The background (dark) signal, the signal that the detector will carry without exposure to X‐rays, was measured at three different gain settings and with exposure times of 1 ms to 15 s. The radial geometric flatness of the sensor panel was measured using the diffraction pattern from a CeO2 powder standard. The large active area and fast data‐capturing rate, i.e. 8 frames s?1 in radiography mode, 30 frames s?1 in fluoroscopy mode, make the GE 41RT one of a kind and very versatile in synchrotron diffraction. The loading behavior of a Cu/Nb multilayer material is used to demonstrate the use of the detector in a strain–stress experiment. Data from the measurement of various samples, amorphous SiO2 in particular, are presented to show the detector effectiveness in pair distribution function measurements.  相似文献   

11.
为了研究CCD与CMOS像素传感器对γ射线电离辐射的响应差异,对比研究了4类像素传感器的结构特点和辐射响应特性。通过辐射实验,对各传感器在不同辐射水平条件下的光子响应事件分布、平均灰度值以及典型光子响应事件进行研究。研究结果表明:光子响应程度均与辐射剂量率相关;CCD像素传感器的沟道传输方式使每列像元间的辐射响应更容易相互干扰;平均灰度值随剂量率的增大存在明显的梯度,各积分周期内输出信号灰度值围绕均值上下波动,CCD像素传感器输出信号灰度浮动范围较小;CMOS像素传感器各像元对光子的响应更加明显,CCD像素传感器各像元的响应信号易与相邻像元发生串扰;各类像素传感器典型辐射响应事件区域中发生光子响应的像元数量随剂量率的增大而增多,响应事件并非单个光子的行为,而是反映了多个光子在区域内同时沉积能量的过程。本研究为开发像素传感器的γ射线辐射探测技术和应用提供了重要的理论分析和实验数据支撑。  相似文献   

12.
南瑞华  王朋飞  坚增运  李晓娟 《物理学报》2017,66(20):206101-206101
碲锌镉(CdZnTe)是一种性能优异的室温核辐射半导体探测器材料,广泛应用于核安全、核医学以及空间科学等领域.然而,传统的CdZnTe平面探测器受制于"空穴拖尾"效应的影响,探测性能有待改善.采用改进的垂直布里奇曼法生长的In掺杂Cd_(0.9)Zn_(0.1)Te单晶制备出单载流子收集的4×4像素阵列探测器,通过电流-电压(I-V)测试和γ射线能谱响应测试,研究了像素探测器的电学性能和载流子电输运性能,随之与相应的CdZnTe平面探测器进行了性能对比.结果表明,CdZnTe像素探测器的电阻率约为1.73×10~(10)?·cm,且施加100 V偏压后单像素点的最大漏电流小于2.2 nA;当施加偏压升高至300 V时,单像素点对~(241)Am@59.5 keV的γ射线的最佳能量分辨率可达5.78%,探测性能优于相同条件下制备的CdZnTe平面探测器.  相似文献   

13.
A new spectral method for surface investigation based on optical-phase conjugation in an unexcited transparent medium is theoretically developed and experimentally verified. On YAlO3:Nd (1 at %) single crystals at room temperature, the phase conjugation of light is revealed for a photon energy equal to half the energy of resonant local oscillations of electrons of impurity centers. The dependences of the intensity of the phase-conjugation signal of light on its spectral structure are investigated. An explanation of the effect of the Raman scattering of light electromagnetic waves by neodymium ions is offered.  相似文献   

14.
超导转变边沿单光子探测器原理与研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
张青雅  董文慧  何根芳  李铁夫  刘建设  陈炜 《物理学报》2014,63(20):200303-200303
量子信息技术近十多年来的快速发展对单光子探测器的性能提出了更高的要求,高性能单光子探测器也因此受到了更多的关注.与传统的单光子探测器相比,超导转变边沿(TES)单光子探测器在探测效率、能量分辨、光子数分辨和暗计数等方面具有突出优势.目前,超导TES单光子探测器已经被成功地应用在量子光学实验和量子密钥分配系统中,未来在量子信息技术等研究领域具有更广泛的应用.本文从超导TES单光子探测器的工作原理、制备流程、测试系统、主要性能指标以及研究现状和进展等方面对该探测器技术进行简要综述.  相似文献   

15.
The implementation of a laser pump/X‐ray probe scheme for performing picosecond‐resolution X‐ray diffraction at the 1W2B wiggler beamline at Beijing Synchrotron Radiation Facility is reported. With the hybrid fill pattern in top‐up mode, a pixel array X‐ray detector was optimized to gate out the signal from the singlet bunch with interval 85 ns from the bunch train. The singlet pulse intensity is ~2.5 × 106 photons pulse?1 at 10 keV. The laser pulse is synchronized to this singlet bunch at a 1 kHz repetition rate. A polycapillary X‐ray lens was used for secondary focusing to obtain a 72 µm (FWHM) X‐ray spot. Transient photo‐induced strain in BiFeO3 film was observed at a ~150 ps time resolution for demonstration.  相似文献   

16.
The XPAD3S‐CdTe, a CdTe photon‐counting pixel array detector, has been used to measure the energy and the intensity of the white‐beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy‐resolved X‐ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending‐magnet beamline METROLOGIE at Synchrotron SOLEIL. The X‐ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging‐plate detector and then measured with both the XPAD3S‐CdTe and the XPAD3S‐Si, a silicon photon‐counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit‐cell parameter determination and the measurement of high‐quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X‐ray diffraction opened up by this type of technology are discussed.  相似文献   

17.
The electronic structure of supported mass-selected Ag3 clusters is analyzed by joint femtosecond photoemission spectroscopy and ab initio theoretical investigations. A wide band gap insulating magnesia ultra-thin film on Mo(100) has been chosen as substrate in order to minimize the electronic interaction between metal clusters and support. After magnesia ultra-thin film preparation no photoemission from the molybdenum substrate is observed anymore, instead very weak two photon photoemission is detected possibly originating from surface or subsurface oxide defect states. Soft-landing deposition of 2 of atomic monolayer equivalents of Ag3 clusters results in the disappearance also of the MgO two photon photoemission signal, while a strong single photon photoemission signal is detected from states located directly below the Fermi level. The theoretical study of structural, electronic and optical properties of Ag3 at two model sites of MgO (100), the stoichiometric MgO(100) and an FS-center defect, based on the DFT method and the embedded cluster model provides insight into the interactions between the cluster and the support which are responsible for the characteristic spectroscopic features.  相似文献   

18.
Small‐angle X‐ray photon correlation spectroscopy (XPCS) measurements spanning delay times from 826 ns to 52.8 s were performed using a photon‐counting pixel array detector with a dynamic range of 0–3 (2 bits). Fine resolution and a wide dynamic range of time scales was achieved by combining two modes of operation of the detector: (i) continuous mode, where data acquisition and data readout are performed in parallel with a frame acquisition time of 19.36 µs, and (ii) burst mode, where 12 frames are acquired with frame integration times of either 2.56 µs frame?1 or 826 ns frame?1 followed by 3.49 ms or 1.16 ms, respectively, for readout. The applicability of the detector for performing multi‐speckle XPCS was demonstrated by measuring the Brownian dynamics of 10 nm‐radius gold and 57 nm‐radius silica colloids in water at room temperature. In addition, the capability of the detector to faithfully record one‐ and two‐photon counts was examined by comparing the statistical distribution of photon counts with expected probabilities from the negative binomial distribution. It was found that in burst mode the ratio of 2 s to 1 s is markedly smaller than predicted and that this is attributable to pixel‐response dead‐time.  相似文献   

19.
The features of the optical properties of nanostructured samples of iron-yttrium garnet Y3Fe5O12 (YIG) in the range of 0.5 to 4.7 eV, which includes both the fundamental-absorption region and low-energy electron excitations, have been investigated by spectroscopic ellipsometry. The results are discussed in comparison with the measurement data of a YIG single crystal. The dispersion of the optical functions in nanostructured samples is significantly different from that for the single crystal: the spectral density is redistributed from the energy region above the fundamental absorption edge to the region below the edge. It has been shown that the energy positions of the main electronic transitions in nanostructured samples are on the whole the same as in the single crystal; at the same time, the intensity of low-energy transitions increases. The possible causes of this increase and the resolution of the fine absorption structure in the bandgap of nanostructured Y3Fe5O12 are discussed.  相似文献   

20.
The effect the conditions of preparing thermoelectric solid solutions of Bi0.5Sb1.5Te3 + 0.06 wt % Pb by hardening from the liquid state with subsequent hot pressing have on their thermoelectric properties is studied. It is found that the optimum thermoelectric quality factors are achieved at a 2200–2800 rpm rate of copper disc rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号