首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A simple graph \(G=(V,\,E)\) is said to be antimagic if there exists a bijection \(f{\text {:}}\,E\rightarrow [1,\,|E|]\) such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection \(f{\text {:}}\,V\rightarrow [1,\, |V|],\) such that \(\forall x,\,y\in V,\)
$$\begin{aligned} \sum _{x_i\in N(x)}f\left( x_i\right) \ne \sum _{x_j\in N(y)}f\left( x_j\right) . \end{aligned}$$
Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval \([1,\,2n+m-4]\) and, for trees with k inner vertices, in the interval \([1,\,m+k].\) In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree \(\Delta \) in the interval \([1,\,n+t(n-t)],\) where \( t=\min \{\Delta ,\,\lfloor n/2\rfloor \},\) and, for trees with k leaves, in the interval \([1,\, 3n-4k].\) In particular, all trees with \(n=2k\) vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam.
  相似文献   

2.
Let G be a connected graph of order \({n\ge 3}\) and size m and \({f:E(G)\to \mathbb{Z}_n}\) an edge labeling of G. Define a vertex labeling \({f': V(G)\to \mathbb{Z}_n}\) by \({f'(v)= \sum_{u\in N(v)}f(uv)}\) where the sum is computed in \({\mathbb{Z}_n}\) . If f′ is one-to-one, then f is called a modular edge-graceful labeling and G is a modular edge-graceful graph. A graph G is modular edge-graceful if G contains a modular edge-graceful spanning tree. Several classes of modular edge-graceful trees are determined. For a tree T of order n where \({n\not\equiv 2 \pmod 4}\) , it is shown that if T contains at most two even vertices or the set of even vertices of T induces a path, then T is modular edge-graceful. It is also shown that every tree of order n where \({n\not\equiv 2\pmod 4}\) having diameter at most 5 is modular edge-graceful.  相似文献   

3.
Consider a graph \(G=(V,E)\) and a vertex subset \(A \subseteq V\). A vertex v is positive-influence dominated by A if either v is in A or at least half the number of neighbors of v belong to A. For a target vertex subset \(S \subseteq V\), a vertex subset A is a positive-influence target-dominating set for target set S if every vertex in S is positive-influence dominated by A. Given a graph G and a target vertex subset S, the positive-influence target-dominating set (PITD) problem is to find the minimum positive-influence dominating set for target S. In this paper, we show two results: (1) The PITD problem has a polynomial-time \((1 + \log \lceil \frac{3}{2} \Delta \rceil )\)-approximation in general graphs where \(\Delta \) is the maximum vertex-degree of the input graph. (2) For target set S with \(|S|=\Omega (|V|)\), the PITD problem has a polynomial-time O(1)-approximation in power-law graphs.  相似文献   

4.
A vertex-colored graph G is rainbow vertex connected if any two distinct vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex connected. In this paper, we prove that for a connected graph G, if \({{\rm diam}(\overline{G}) \geq 3}\), then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. Next, we obtain that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 2}\), if G is connected, then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. A total-colored path is total rainbow if its edges and internal vertices have distinct colors. A total-colored graph G is total rainbow connected if any two distinct vertices are connected by some total rainbow path. The total rainbow connection number of G, denoted by trc(G), is the smallest number of colors required to color the edges and vertices of G in order to make G total rainbow connected. In this paper, we prove that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 3}\), if G is connected, then trc\({(G) \leq 5}\), and this bound is tight. Next, a Nordhaus–Gaddum-type result for the total rainbow connection number is provided. We show that if G and \({\overline{G}}\) are both connected, then \({6 \leq {\rm trc} (G) + {\rm trc}(\overline{G}) \leq 4n - 6.}\) Examples are given to show that the lower bound is tight for \({n \geq 7}\) and n = 5. Tight lower bounds are also given for n = 4, 6.  相似文献   

5.
A set A of vertices in an r-uniform hypergraph \(\mathcal H\) is covered in \(\mathcal H\) if there is some vertex \(u\not \in A\) such that every edge of the form \(\{u\}\cup B\), \(B\in A^{(r-1)}\) is in \(\mathcal H\). Erd?s and Moser (J Aust Math Soc 11:42–47, 1970) determined the minimum number of edges in a graph on n vertices such that every k-set is covered. We extend this result to r-uniform hypergraphs on sufficiently many vertices, and determine the extremal hypergraphs. We also address the problem for directed graphs.  相似文献   

6.
A digraph \({\overrightarrow{\mathcal{Pc}}(G)}\) is said to be the directed power graph on the conjugacy classes of a group G, if its vertices are the non-trivial conjugacy classes of G, and there is an arc from vertex C to C′ if and only if \({C \neq C'}\) and \({C \subseteqq {C'}^{m}}\) for some positive integer \({m > 0}\). Moreover, the simple graph \({\mathcal{Pc}(G)}\) is said to be the (undirected) power graph on the conjugacy classes of a group G if its vertices are the conjugacy classes of G and two distinct vertices C and C′ are adjacent in \({\mathcal{Pc}(G)}\) if one is a subset of a power of the other. In this paper, we find some connections between algebraic properties of some groups and properties of the associated graph.  相似文献   

7.
Given a connected simple graph \(G=(V(G),E(G))\), a set \(S\subseteq V(G)\) is said to be a 2-metric generator for G if and only if for any pair of different vertices \(u,v\in V(G)\), there exist at least two vertices \(w_1,w_2\in S\) such that \(d_G(u,w_i)\ne d_G(v,w_i)\), for every \(i\in \{1,2\}\), where \(d_G(x,y)\) is the length of a shortest path between x and y. The minimum cardinality of a 2-metric generator is the 2-metric dimension of G, denoted by \(\dim _2(G)\). The metric \(d_{G,2}: V(G)\times V(G)\longmapsto {\mathbb {N}}\cup \{0\}\) is defined as \(d_{G,2}(x,y)=\min \{d_G(x,y),2\}\). Now, a set \(S\subseteq V(G)\) is a 2-adjacency generator for G, if for every two vertices \(x,y\in V(G)\) there exist at least two vertices \(w_1,w_2\in S\), such that \(d_{G,2}(x,w_i)\ne d_{G,2}(y,w_i)\) for every \(i\in \{1,2\}\). The minimum cardinality of a 2-adjacency generator is the 2-adjacency dimension of G, denoted by \({\mathrm {adim}}_2(G)\). In this article, we obtain closed formulae for the 2-metric dimension of the lexicographic product \(G\circ H\) of two graphs G and H. Specifically, we show that \(\dim _2(G\circ H)=n\cdot {\mathrm {adim}}_2(H)+f(G,H),\) where \(f(G,H)\ge 0\), and determine all the possible values of f(GH).  相似文献   

8.
A set \(S\subseteq V\) is a paired-dominating set if every vertex in \(V{\setminus } S\) has at least one neighbor in S and the subgraph induced by S contains a perfect matching. The paired-domination number of a graph G, denoted by \(\gamma _{pr}(G)\), is the minimum cardinality of a paired-dominating set of G. A conjecture of Goddard and Henning says that if G is not the Petersen graph and is a connected graph of order n with minimum degree \(\delta (G)\ge 3\), then \(\gamma _{pr}(G)\le 4n/7\). In this paper, we confirm this conjecture for k-regular graphs with \(k\ge 4\).  相似文献   

9.
We study theta characteristics of hyperelliptic metric graphs of genus g with no bridge edges. These graphs have a harmonic morphism of degree two to a metric tree that can be lifted to a morphism of degree two of a hyperelliptic curve X over K to the projective line, with K an algebraically closed field of char\({(K) \not =2}\), complete with respect to a non-Archimedean valuation, with residue field k of char\({(k)\not=2}\). The hyperelliptic curve has \({2^{2g}}\) theta characteristics. We show that for each effective theta characteristic on the graph, \({2^{g-1}}\) even and \({2^{g-1}}\) odd theta characteristics on the curve specialize to it; and \({2^g}\) even theta characteristics on the curve specialize to the unique not effective theta characteristics on the graph.  相似文献   

10.
Given a word \(w=w_1w_2\cdots w_n\) of length n over an ordered alphabet \(\Sigma _k\), we construct a graph \(G(w)=(V(w), E(w))\) such that V(w) has n vertices labeled \(1, 2,\ldots , n\) and for \(i, j \in V(w)\), \((i, j) \in E(w)\) if and only if \(w_iw_j\) is a scattered subword of w of the form \(a_{t}a_{t+1}\), \(a_t \in \Sigma _k\), for some \(1 \le t \le k-1\) with the ordering \(a_t<a_{t+1}\). A graph is said to be Parikh word representable if there exists a word w over \(\Sigma _k\) such that \(G=G(w)\). In this paper we characterize all Parikh word representable graphs over the binary alphabet in terms of chordal bipartite graphs. It is well known that the graph isomorphism (GI) problem for chordal bipartite graph is GI complete. The GI problem for a subclass of (6, 2) chordal bipartite graphs has been addressed. The notion of graph powers is a well studied topic in graph theory and its applications. We also investigate a bipartite analogue of graph powers of Parikh word representable graphs. In fact we show that for G(w), \(G(w)^{[3]}\) is a complete bipartite graph, for any word w over binary alphabet.  相似文献   

11.
We show that on every Ramanujan graph \({G}\), the simple random walk exhibits cutoff: when \({G}\) has \({n}\) vertices and degree \({d}\), the total-variation distance of the walk from the uniform distribution at time \({t=\frac{d}{d-2} \log_{d-1} n + s\sqrt{\log n}}\) is asymptotically \({{\mathbb{P}}(Z > c \, s)}\) where \({Z}\) is a standard normal variable and \({c=c(d)}\) is an explicit constant. Furthermore, for all \({1 \leq p \leq \infty}\), \({d}\)-regular Ramanujan graphs minimize the asymptotic \({L^p}\)-mixing time for SRW among all \({d}\)-regular graphs. Our proof also shows that, for every vertex \({x}\) in \({G}\) as above, its distance from \({n-o(n)}\) of the vertices is asymptotically \({\log_{d-1} n}\).  相似文献   

12.
The anti-Ramsey number, AR(nG), for a graph G and an integer \(n\ge |V(G)|\), is defined to be the minimal integer r such that in any edge-colouring of \(K_n\) by at least r colours there is a multicoloured copy of G, namely, a copy of G that each of its edges has a distinct colour. In this paper we determine, for large enough \(n,\, AR(n,L\cup tP_2)\) and \(AR(n,L\cup kP_3)\) for any large enough t and k, and a graph L satisfying some conditions. Consequently, we determine AR(nG), for large enough n, where G is \(P_3\cup tP_2\) for any \(t\ge 3,\, P_4\cup tP_2\) and \(C_3\cup tP_2\) for any \(t\ge 2,\, kP_3\) for any \(k\ge 3,\, tP_2\cup kP_3\) for any \(t\ge 1,\, k\ge 2\), and \(P_{t+1}\cup kP_3\) for any \(t\ge 3,\, k\ge 1\). Furthermore, we obtain upper and lower bounds for AR(nG), for large enough n, where G is \(P_{k+1}\cup tP_2\) and \(C_k\cup tP_2\) for any \(k\ge 4,\, t\ge 1\).  相似文献   

13.
Let G be a finite simple graph and I(G) denote the corresponding edge ideal. For all \(s \ge 1\), we obtain upper bounds for \({\text {reg}}(I(G)^s)\) for bipartite graphs. We then compare the properties of G and \(G'\), where \(G'\) is the graph associated with the polarization of the ideal \((I(G)^{s+1} : e_1\cdots e_s)\), where \(e_1,\cdots , e_s\) are edges of G. Using these results, we explicitly compute \({\text {reg}}(I(G)^s)\) for several subclasses of bipartite graphs.  相似文献   

14.
Let G = (V, E) be a graph. A set \({S\subseteq V}\) is a restrained dominating set if every vertex in V ? S is adjacent to a vertex in S and to a vertex in V ? S. The restrained domination number of G, denoted γ r (G), is the smallest cardinality of a restrained dominating set of G. We will show that if G is claw-free with minimum degree at least two and \({G\notin \{C_{4},C_{5},C_{7},C_{8},C_{11},C_{14},C_{17}\}}\) , then \({\gamma_{r}(G)\leq \frac{2n}{5}.}\)  相似文献   

15.
The notation \(F\rightarrow (G,H)\) means that if the edges of F are colored red and blue, then the red subgraph contains a copy of G or the blue subgraph contains a copy of H. The connected size Ramsey number \(\hat{r}_c(G,H)\) of graphs G and H is the minimum size of a connected graph F satisfying \(F\rightarrow (G,H)\). For \(m \ge 2,\) the graph consisting of m independent edges is called a matching and is denoted by \(mK_2\). In 1981, Erdös and Faudree determined the size Ramsey numbers for the pair \((mK_2, K_{1,t})\). They showed that the disconnected graph \(mK_{1,t} \rightarrow (mK_2,K_{1,t})\) for \( t,m \ge 1\). In this paper, we will determine the connected size Ramsey number \(\hat{r}_c(nK_2, K_{1,3})\) for \(n\ge 2\) and \(\hat{r}_c(3K_2, C_4)\). We also derive an upper bound of the connected size Ramsey number \(\hat{r}_c(nK_2, C_4),\) for \(n\ge 4\).  相似文献   

16.
We study the local Hecke algebra \({\mathcal{H}_{G}(K)}\) for \({G = {\rm GL}_{n}}\) and K a non-archimedean local field of characteristic zero. We show that for \({G = {\rm GL}_{2}}\) and any two such fields K and L, there is a Morita equivalence \({\mathcal{H}_{G}(K) \sim_{M} \mathcal{H}_{G}(L)}\), by using the Bernstein decomposition of the Hecke algebra and determining the intertwining algebras that yield the Bernstein blocks up to Morita equivalence. By contrast, we prove that for \({G = {\rm GL}_{n}}\), there is an algebra isomorphism \({\mathcal{H}_{G}(K) \cong \mathcal{H}_{G}(L)}\) which is an isometry for the induced \({L^1}\)-norm if and only if there is a field isomorphism \({K \cong L}\).  相似文献   

17.
Let \({\mathbb{K}}\) be a field and \({S=\mathbb{K}[x_1,\dots,x_n]}\) be the polynomial ring in n variables over \({\mathbb{K}}\). Let G be a graph with n vertices. Assume that \({I=I(G)}\) is the edge ideal of G and \({J=J(G)}\) is its cover ideal. We prove that \({{\rm sdepth}(J)\geq n-\nu_{o}(G)}\) and \({{\rm sdepth}(S/J)\geq n-\nu_{o}(G)-1}\), where \({\nu_{o}(G)}\) is the ordered matching number of G. We also prove the inequalities \({{\rmsdepth}(J^k)\geq {\rm depth}(J^k)}\) and \({{\rm sdepth}(S/J^k)\geq {\rmdepth}(S/J^k)}\), for every integer \({k\gg 0}\), when G is a bipartite graph. Moreover, we provide an elementary proof for the known inequality reg\({(S/I)\leq \nu_{o}(G)}\).  相似文献   

18.
For any given two graphs G and H, the notation \(F\rightarrow \) (GH) means that for any red–blue coloring of all the edges of F will create either a red subgraph isomorphic to G or a blue subgraph isomorphic to H. A graph F is a Ramsey (GH)-minimal graph if \(F\rightarrow \) (GH) but \(F-e\nrightarrow (G,H)\), for every \(e \in E(F)\). The class of all Ramsey (GH)-minimal graphs is denoted by \(\mathcal {R}(G,H)\). In this paper, we construct some infinite families of trees belonging to \(\mathcal {R}(P_3,P_n)\), for \(n=8\) and 9. In particular, we give an algorithm to obtain an infinite family of trees belonging to \(\mathcal {R}(P_3,P_n)\), for \(n\ge 10\).  相似文献   

19.
A vertex \(v\in V(G)\) is said to distinguish two vertices \(x,y\in V(G)\) of a nontrivial connected graph G if the distance from v to x is different from the distance from v to y. A set \(S\subset V(G)\) is a local metric generator for G if every two adjacent vertices of G are distinguished by some vertex of S. A local metric generator with the minimum cardinality is called a local metric basis for G and its cardinality, the local metric dimension of G. It is known that the problem of computing the local metric dimension of a graph is NP-Complete. In this paper we study the problem of finding exact values or bounds for the local metric dimension of strong product of graphs.  相似文献   

20.
Faults and viruses often spread in networked environments by propagating from site to neighboring sites. We model this process of network contamination by graphs. Consider a graph \(G=(V,E)\), whose vertex set is contaminated and our goal is to decontaminate the set \(V\) using mobile decontamination agents that traverse along the edge set of \(G\). Temporal immunity, \(\tau (G) \ge 0\), is defined as the time that a decontaminated vertex of \(G\) can remain continuously exposed to some contaminated neighbor without getting infected itself. The immunity number of \(G\), \(\iota _k(G)\), is the least \(\tau (G)\) that is required to decontaminate \(G\) using \(k\) agents. We study immunity number for some classes of graphs corresponding to network topologies and present upper bounds on \(\iota _1(G)\), in some cases, with matching lower bounds. Variations of this problem have been extensively studied in literature, but proposed algorithms have been restricted to monotone strategies, where a vertex, once decontaminated, may not be recontaminated. We exploit nonmonotonicity to give bounds which are strictly better than those derived using monotone strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号