首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dinuclear complexes of CuII with 3-(3,5-dimethylpyrazol-1-yl)-6-(2-hydroxyethylami-no)-1,2,4,5-tetrazine (1) and CoII with 3-(3,5-dimethylpyrazol-1-yl)-6-(piperidin-1-yl)-1,2,4,5- tetrazine (2) were synthesized and structurally characterized, and the magnetic (SQUID) and resonance (EPR) properties of van der Waals crystals based on these complexes were studied. Unusual behavior of the effective magnetic moment μeff(T) is observed at T < 60 K. A nonmonotonic increase in μeff(?) for 1 (s~6 %) and a 20% reduction of μeff(?) for 2 have a common origin and are due to the influence of spin-orbital coupling on the character of the splitting between the t2g and eg levels of the central ion. Distortions of the coordination site “switch on” a positive (1) or negative (2) contribution of the orbital magnetic moment near 6 K. Irreversible temperature behavior of μeff(T) in the heating and cooling regimes in the vicinity of 60 K suggests that the character of structural distortions and the magnetic properties are related to ligand geometry. This factor plays a significant role in crystal engineering of magnetoactive structures with polynitrogen ligands.  相似文献   

2.
The aim of the work is synthesis of some novel azo dye from 1,2-dihydro-4-hydroxy-2-oxoquinoline-6-sulfonic acid (3), 4-hydroxy-6-methoxyquinolin-2(1H)-one (4), and 4-hydroxy-6-nitroquinolin-2(1H)-one (5). The prepared compounds were screened for antibacterial against Staphylococcus aureus, Escherichia coli, and antifungal activity against Candida sp., Aspergillus multi and Aspergillus niger. The structure of newly compounds was characterized by 1H-NMR, IR and elemental analysis.  相似文献   

3.
Metal(II) complexes of 4-(((2-hydroxynaphthalen-1-yl)methylene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HL) were prepared, and their compositions and physicochemical properties were characterized on the basis of elemental analysis, with1HNMR, UV–Vis, IR, mass spectroscopy and thermogravimetric analysis. All results confirm that the novel complexes have a 1:1 (M:HL) stoichiometric formulae [M(HL)Cl2] (M = Cu(II)(1), Cd(II)(5)), [Cu(L)(O2NO)(OH2)2](2), [Cu(HL)(OSO3)(OH2)3]2H2O(3), [Co(HL)Cl2(OH2)2]3H2O(4), and the ligand behaves as a neutral/monobasic bidentate/tridentate forming a five/six-membered chelating ring towards the metal ions, bonding through azomethine nitrogen, exocyclic carbonyl oxygen, and/or deprotonated phenolic oxygen atoms. The XRD studies show that both the ligand and Cu(II) complex (1) show polycrystalline with monoclinic crystal structure. The molar conductivities show that all the complexes are non-electrolytes. On the basis of electronic spectral data and magnetic susceptibility measurements, a suitable geometry has been proposed. The trend in g values (g ll > g  > 2.0023) suggest that the unpaired electron on copper has a \(d_{{x^{2} - y^{2} }}\) character, and the complex (1) has a square planar, while complexes (2) and (3) have a tetragonal distorted octahedral geometry. The molecular and electronic structures of the ligand (HL) and its complexes (15) have been discussed. Molecular docking was used to predict the binding between HL ligand and the receptors of the crystal structure of Escherichia coli (E. coli) (3t88) and the crystal structure of Staphylococcus aureus (S. aureus) (3q8u). The activation thermodynamic parameters, such as activation energy (E a), enthalpy (ΔH), entropy (ΔS), and Gibbs free energy change of the decomposition (ΔG) are calculated using Coats–Redfern and Horowitz–Metzger methods. The ligand and its metal complexes (15) showed antimicrobial activity against bacterial species such as Gram positive bacteria (Bacillus cereus and S. aureus), Gram negative bacteria (E. coli and Klebsiella pneumoniae) and fungi (Aspergillus niger and Alternaria alternata); the complexes exhibited higher activity than the ligand.  相似文献   

4.
A series of new functionalized 2-benzoylamino-5-hetaryl-1,3,4-oxadiazoles were efficiently synthesized via the reaction of the versatile key intermediates, 2-benzoylamino-5-cyanomethyl-1,3,4-oxadiazole (1) and N-(5-(5-amino-3-phenylamino)-1H-pyrazol-4-yl)-1,3,4-oxadiazol-2-yl)-benzamide (13), with some appropriate electrophilic reagents. The structures of the newly synthesized compounds were established on the basis of elemental analyses, spectral data, and by alternative synthesis wherever possible. The mechanisms of the studied reactions are discussed. Also, we evaluate the antioxidant activity of some representative examples of the newly prepared compounds. Among the synthesized compounds, 2-benzoylamino-5-cyanomethyl-1,3,4-oxadiazole (1) and N-(5-(7-methyl-5-oxo-2-(phenylamino)-4,5-dihydropyrazolo[1,5-a]pyrimidin-3-yl)-1,3,4-oxadiazol-2-yl)benzamide (17) showed excellent antioxidant activity and exhibited high protection against DNA damage induced by the Bleomycin iron complex.  相似文献   

5.
Based on aldehydes 1a—f or ketone 1g, 3-substituted 4-oxo esters 6a—g were synthesized in three steps in moderate to good overall yield (12—50%) and in excellent enantiomeric excesses (ee >90—>95%) by an Umpolung-strategy employing the SAMP-/RAMP-hydrazone method. The key step in the synthesis is the highly diastereoselective alkylation of lithiated SAMP-hydrazones 3a—g (chiral d2-nucleophiles) with tert-butyl bromoacetate (4) (a2-electrophile) to furnish the alkylated 3-hydrazono tert-butylesters 5a—g in good yields (58—91%) and in excellent diastereomeric excesses (de >90—>98%). Regeneration of the carbonyl functionality by cleavage of the hydrazones 5a—g was accomplished either by acidic hydrolysis or ozonolysis to give the acid labile and oxidation-sensitive 3-substituted 4-oxo esters 6a—g in moderate yields (19—63%) and in excellent enantiomeric excesses (ee >90—>95%). The absolute configuration of compounds 6a—g were assigned by conversion of 4-oxo esters (S)-6d and (R)-6e into their corresponding known 3-substituted λ-butyrolactones (S)-7d and (R)-7e.  相似文献   

6.
A series of new (E)-1-{2-[(1-benzyl-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones (3a–3i) has been synthesized via copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition reaction (CuAAC) of benzyl azide with substituted (E)-3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-1-[2-(prop-2-ynyloxy)phenyl]prop-2-en-1-ones (2a–2i). The synthesized compounds have been characterized by their IR, lH, 13C NMR spectra, and mass spectroscopy data. All the compounds have been screened for antimicrobial activity.  相似文献   

7.
Two new fused quinoxaline-containing monomers—2,3-bis(9-(2-decyltetradecyl)-9H-carbazol-3-yl)dithieno[3,2-f:2'3'-h]quinoxaline (М1) and 2,5-di(nonadecan-3-yl)bis[1,3]thiazolo[4,5-a:5',4'-c]bisthieno[3,2-h:2',3'-j]phenazine (М2)—have been synthesized in high yields of 88 and 83% as promising building blocks of D-A polymers for photovoltaic applications. The optical bandgaps, found from the absorption edge, are 2.79 and 2.88 eV, respectively. The HOMO/LUMO energies of М1 and М2 are–5.83/–2.96 and–5.83/–2.98 eV, respectively. Both monomers have low-lying HOMO levels, which is favorable for a high open-circuit voltage and a high stability in air in the development of PSCs. The E g ec values of monomers М1 and М2 are 2.87 and 2.85 eV and are consistent well with the optical bandgap (2.79 and 2.88 eV, respectively).  相似文献   

8.
A computational Petra/Osiris/Molinspiration and Density Functional Theory based model has been developed for the identification of physic–chemical parameters governing the bioactivity of chiral amides derivatives of diacetyl-L-tartaric acid and aromatic amines 4–9 containing combined antifungal pharmacophore sites. The six compounds 4–9 analyzed here were previously experimentally and now virtually screened for their antibacterial/antifungal activity. The highest antifungal activity was obtained for compound 6, which exhibited excellent % inhibition, comparable to Terbinafine. Compound 5, represents increased activity as compared to its isomer 6. The increase of bioactivity from 5 to 6 could be attributed to the existence of pi-charge transfer from para-Bromo-phenyl to its amid group (COδ?--NHδ+), which plays a crucial template role in the organization of antifungal O,O-phramacophore sites. Moreover, it is cheap, has fewer side effects, and its possible inclusions in selective fungal/viral media such as Fusarium, HIV, and Hepatitis B/C have to be questioned.  相似文献   

9.
Two copper complexes with long rigid ligands, Cu(Tta)2(L1) (I), and Cu(Tta)2(L2) (II), where L1 = (E)-3-(4-(1H-benzo[d]imidazol-1-yl)-(4-phenyl)phenyl)-1-phenylprop-2-en-1-one, L2 = (E)-3-(4-(1H-imidazol-1-yl)phenyl)-1-(4-phenyl)phenyl)prop-2-en-1-one), have been synthesized and characterized. The single-crystal X-ray analysis (CIF files CCDC nos. 1409671 (I) and 1409672 (II)) for complexes I and II demonstrates that each copper ion assumes a distorted square-pyramidal MO4N polyhedron in which four oxygen atoms come from the Tta ligands, and one nitrogen atom comes from the N-donor ligand. Both of the complexes are linked into 3D networks through weak intermolecular interactions.  相似文献   

10.
A series of novel 9-{2-[(1H-1,2,3-triazol-4-yl)methoxy]phenyl}-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione derivatives were synthesized by a click chemistry approach. The structures of all the newly synthesized compounds were characterized by IR, MASS, 1H and 13C NMR spectral data. The final analogues showed good to excellent antibacterial and antifungal activities in an agar well diffusion assay. Compounds 6i and 6f were the most active against all the test bacterial and fungal strains.  相似文献   

11.
Acetyl benzofurans 1a, 1b reacted with isatins 2a2f in the presence of pyridine to give corresponding 3-[2-(1-benzofuran-2-yl)-2-oxoethyl]-3-hydroxy-1,3-dihydro-2H-indol-2-one derivatives 3a3l. Dehydration of the latter in acidic media led to the corresponding α,β-unsaturated ketones 4a4l. The structures of newly synthesized compounds 3a3l and 4a4l were established on the basis of analytical and spectral data. The synthesized compounds were screened for their antibacterial and antifungal activities. Compounds 5d, 5f, and 5h displayed excellent antimicrobial activity. The synthesized compounds were studied for docking on the enzyme, Glucosamine-6-phosphate Synthase.  相似文献   

12.
A series of [1,2,4]triazolo[4,3-a]pyridine derivatives bearing a sulfide substructure was designed, synthesized and characterized via 1H·NMR, 13C·NMR, IR and elemental analyses. Bioassay Results indicated some of the derivatives displayed good fungicidal activity on Rhizoctonia cerealis, moderated insecticidal activity against Plutella xylostella and good insecticidal activity on Helicoverpa armigera. The inhibitory effects of compounds 4g and 4u against Rhizotonia cerealis were 70.9% at 50 μg mL?1; the IC50 values of compounds 4d and 4s against Plutella xylostella were 43.87 and 50.75 μg mL?1, respectively. And the IC50 values of compounds 4d, 4q, and 4s on Helicoverpa armigera were 58.3, 77.14 and 65.31 μg mL?1, respectively, which were better than that of commercial chlorpyrifos (103.77 μg mL?1).  相似文献   

13.
Two new oxovanadium(V) complexes, [VOL1(OCH3)(CH3OH)] (I) and [VOL2(OCH3)] (II), where L1 and L2 are the di-anionic form of N'-[1-(5-fluoro-2-hydroxyphenyl)methylidene]nicotinohydrazide and N'-(5-fluoro-2-hydroxybenzylidene)-2-hydroxynaphthylhydrazide, respectively, have been synthesized and characterized by elemental analysis, FT-IR spectra, and single crystal X-ray determination (CIF files CCDC nos. 891852 (I), 891853 (II)). The crystal of I is monoclinic: space group P21/c, a = 8.061(1), b = 15.293(2), c = 13.471(2) Å, ß = 92.595(2)°, V = 1658.8(4) Å3, Z = 4. The crystal of II is monoclinic: space group P21/n, a = 7.4454(9), b = 8.0833(9), c = 28.906(2) Å, ß = 92.644(2)°, V = 1737.8(3) Å3, Z = 4. The V atom in I is in an octahedral coordination, and that in II is in a square-pyramidal coordination. The antibacterial activity of the compounds against various bacteria was assayed.  相似文献   

14.
A series of benzofuran hydrazones 6a6n were synthesized from benzofuran aldehyde and substituted aromatic hydrazides 5a5n. Structures of all compounds were confimed by IR, 1H and 13C NMR, and Mass spectral data. These compounds were evaluated for their antibacterial activity against gram-negative bacteria (Escherichia coli, –ve), gram-positive bacteria (Bacillus Subtillis, +ve), and antifungal activity against Candida albicans. All compounds demonstrated considerable activity against bacteria and fungi.  相似文献   

15.
Synthesis of new fused systems of triazino[5,6-b]indole starting with preparation of 3-amino[1,2,4]-triazino[5,6-b]indole 1 by reaction of isatin with 2-aminoguanidinium carbonate in boiling acetic acid is presented [1]. Intermediate compound 1 reacted with aldehyde, ethyl chloroformate, triethyl orthoformate, and ninhydrine and gave new heterotetracyclic nitrogen systems, such as 3-(N 2-guanidinylimino)indole-2(1H)-one 2, 3-(N-ethoxycarbonylamino)-4H-[1,2,4]triazino[5,6-b]indole 3, 3-(N-ethoxymethyleneamino)-4H-[1,2,4]-triazino[5,6-b]indole 4, 3-(hydrazinothiocarbonylamino)-4H-[1,2,4]triazino[5,6-b]indole 5, respectively. N-(1,3-dioxoindene-2-ylidene)-4H-[1,2,4]triazino[5,6-b]indol-3-amine 6 was synthesized by reaction of compound 1 with aldehyde, ethyl chloroformate, triethyl orthoformate, and ninhydrine. New fused indole systems, pyrimido[2′,1′:3,4][1,2,4]triazino[5,6-b]indol-3(4H)-one 8, 9, 11, 12 and 1H-imidazo[2′,1′:3,4][1,2,4]triazino-[5,6-b]indol-2(3H)-one 10, were synthesized in the reaction of the intermediate 1 with bifunctional compounds. Structures of the products were elucidated from their elemental analysis and spectral data (IR, 1H and 13C NMR and mass spectra). Antimicrobial activity of some synthesized compounds was tested.  相似文献   

16.
This paper describes the hydrothermal synthesis, full characterization, and architectural diversity of three intriguingly bioactive cobalt–organic frameworks, namely, 3D [Co(HL ? )2(BPY)] n ·4nH2O (1), 2D [Co(HL ? )2(BPE)] n (2), and 2D [Co(HL ? )2(DPP)] n (3) coordination polymers, synthesized through a mixed ligand strategy using H 2 L (1-H-indazole-3-carboxylic acid) as a main structural block and the flexible bipyridine and its derivatives (BPY = 4,4′-bipydine, BPE = 1,2-bis(4-pyridyl)ethane, DPP = 1,3-bis(4-pyridyl)propane) as auxiliary ligand sources. Complexes 13 were isolated as air stable and slightly soluble crystalline solids and characterized using elemental analysis, FT-IR, electrochemical technique, thermogravimetric analysis, powder X-ray diffractometer, and single-crystal X-ray crystallography. The bipyridine derivatives played key roles in defining the structural space group and dimensionality feature of the obtained networks. The abundant H-bonding and ππ stacking interactions in complexes 13 gave rise to their intricate metal–organic structures of 3D (1), 2D (2), and 2D (3). In addition, the solutions of complexes 13 showed profound antifungal activities against the selected strain of Colletotrichum musae compared with the controlled group using benomyl as a traditional agrochemical fungicide.  相似文献   

17.
The syntheses of a mononuclear zinc(II) complex [ZnCl(L1)(Amp)] (I) and a mononuclear nickel(II) complex [Ni(L2)(HL2)](BF4) · 0.5H2O (II) (HL1 = 4-methyl-2-[(4-methylpyridin-2-ylimino) methyl]phenol, HL2 = 4-methyl-2-[(pyridin-2-ylmethylimino)methyl]phenol; Amp = 2-amino-4- methylpyridine) were prepared under microwave irradiation. The complexes were characterized by a combination of elemental analyses, and IR and electronic spectra. Their structures were further confirmed by single crystal X-ray crystallography (СIF files CCDC nos 1437737 (I), 1437738 (II)). The Zn atom in the monomeric complex I is in tetrahedral coordination. The Ni atoms in the dimeric complex II are in octahedral coordination. Crystals of the complexes are stabilized by hydrogen bonds. In order to evaluate the biological activity of the complexes, in vitro antibacterial against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa was assayed. The complexes have strong activity against Bacillus subtilis.  相似文献   

18.

Background

Thiazolidinedione is a pentacyclic moiety having five membered unsaturated ring system composed with carbon, oxygen, nitrogen and sulfur molecules at 1 and 3 position of the thiazole ring and widely found throughout nature in various form. They favourably alter concentration of the hormones secreted by adipocytes, particularly adiponectin. They also increase total body fat and have mixed effects on circulating lipids. Thiazolidinedione nucleus is present in numerous biological moieties and has different pharmacological activities likes, e.g. antimalarial, antimicrobial, antimycobacterial, anticonvulsant, antiviral, anticancer, anti-inflammatory, antioxidant, anti-HIV (human immunodeficiency virus) and antituberculosis.

Results and discussion

The synthesized compounds were screened for their in vitro antimicrobial potential against Gram (positive and negative) bacterial and fungal strains by tube dilution technique. In this series, compound 10 exhibited significant antimicrobial activity against B. subtilis and S. aureus with MIC?=?4.2?×?10?2 µM/ml, compound 15 showed significant activity against K. pneumonia with MIC?=?2.60?×?10?2 µM/ml and compound 4 displayed potent antibacterial activity against E. coli with MIC?=?4.5?×?10?2 µM/ml. Compound 10 had most potent antifungal activity against C. albicans and A. niger with MIC?=?4.2?×?10?2 µM/ml. Compounds 12 and 15 were found as most active antidiabetic agents having IC50?=?27.63 μg/ml and 22.35 μg/ml, respectively, using DPPH assay. Antioxidant activity results indicated that compounds 3 and 9 displayed good antioxidant agent with IC50?=?29.04 μg/ml and 27.66 μg/ml respectively, using α amylase assay.

Conclusion

All the synthesized derivatives exhibited good antimicrobial, antidiabetic and antioxidant activities using specific methods then compared with mentioned standard drugs. Especially, compounds 3, 4, 9, 10, 12 and 15 displayed highest activity. Structure activity relationship demonstrated that presence of electron withdrawing group (o-NO2, p-Cl, p-Br) enhanced the antibacterial activity against E. coli as well as increased the antioxidant activity while the presence of electron releasing group (o/p-OCH3, 3,4,5-trimethoxy) enhanced the antibacterial activity against S. aureus, B. subtilis, S. typhi, K. pneumonia, C. albicans and A. niger as well as the antidiabetic activity.
  相似文献   

19.
Bis[(2,2-dimethyl-4-oxo-2H-benzo[e][1,3]oxazin-3(4H)-yl)methyl]dichlorosilane (1) and -germane (2) were synthesized by the reaction of 2,2-dimethyl-3-(trimethylsilyl)-2H-benzo[e][1,3]oxazin-3(4H)-one with bis(chloromethyl)dichlorosilane and -germane, respectively, taken in a ratio of 2 : 1. The structures of these compounds were determined and their stereodynamic behavior in solution was studied by multinuclear (1H, 13C, and 29Si) and twodimensional (1H, 13C COSY, HETCOR) NMR spectroscopy. The 29Si NMR spectroscopic study of a solution of complex 1 provides evidence that the silicon atom in this complex is pentacoordinate. The X-ray diffraction study showed that the germanium atom in complex 2 in the solid state is hexacoordinate. The permutation isomerization in the coordination units of complexes 1 and 2 was found and investigated by dynamic 1H NMR spectroscopy. Different mechanisms of stereodynamic transformations are suggested and discussed.  相似文献   

20.
The products of photolysis of N-substituted salicylic acid amides, viz., 2-hydroxy-3-tert-butyl-5-ethylbenzoic acid N-(4-hydroxy-3,5-di-tert-butylphenyl)amide (1) and 2-hydroxybenzoic acid N-[3-(4-hydroxy-3,5-di-tert-butylphenyl)prop-1-yl]amide (2), in heptane were studied by optical spectroscopy and stationary and nanosecond laser photolysis (Nd: YAG laser, 355 nm). It was shown by the method of partial deuteration of amides 1 and 2 that they exist in both the unbound state and as complexes with intraand intermolecular hydrogen bond. Amides 1 and 2 are subjected to photolysis, which results in the formation of a triplet state and phenoxyl radicals RO? presumably due to the absorption of the second photon by the excited singlet state. The formation of radical products due to N–H bond ionization was not observed. The main channel of decay of the triplet state and radicals RO? is triplet–triplet annihilation and recombination (k r ≈ 2.3?108 L mol–1 s–1), respectively. The UV irradiation of compounds 1 and 2 leads to the excitation of the amide groups, and no formation of radical products due to N–H bond ionization was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号