首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 683 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

7.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

8.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

9.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
仪器分析是化学专业学生的必修课,其中涉及的基本概念原理比较抽象、难以理解。将理论知识与实验教学相结合可加深学生对理论知识的理解。本文以气相色谱实验为例,通过研究实验条件如柱温、载气流量、进样量以及毛细管气相色谱分流比对分离度的影响,帮助学生理解书本知识,同时也培养了学生科研思维以及分析问题、解决问题的能力。  相似文献   

12.
研究了甲基四氢苯酐、甲基六氢苯酐、萜烯马来酸酐及氢化萜烯马来酸酐等脂族酸酐在HP-1、HP-5、OV-17和FFAP四种不同极性毛细管色谱柱上的色谱性能。分析结果表明,这四种脂环族酸酐均能在OV-17毛细管色谱柱上获得很好的峰形和分离效果。  相似文献   

13.
本文提出了智能最佳化气相色谱柱温的理论基础, 解决了最佳温度求解区间及控温方式的预测、 最难分离物质对及交叉点的预测、围绕最难分离物质对及交叉点的最佳化分离温度的预测三个问题, 为智能最佳化柱温程序奠定了基础。  相似文献   

14.
Sun Y  Xu F  Gong B 《色谱》2011,29(9):918-922
在室温条件下,以甲基丙烯酸环氧丙酯(GMA)为单体,溴异丁酰溴为引发剂,CuCl/2,2′-联吡啶(Bpy)为催化剂,通过原子转移自由基聚合(ATRP)反应,将甲基丙烯酸环氧丙酯聚合在硅胶表面。然后再将L-苯丙氨酸共价键合在硅胶表面的聚合物上,制备了新型手性配体交换色谱固定相,并用该固定相对DL-氨基酸进行分离。用元素分析对其进行了表征;详细考察了固定相的合成过程以及流动相pH值、流动相铜离子浓度、柱温等色谱条件对DL-氨基酸对映体拆分的影响。元素分析得出该固定相表面L-苯丙氨酸接枝密度达到4.32 mg/m2;在手性配体交换分离模式下,流动相为0.05 mol/L KH2PO4-0.1 mmol/L Cu(Ac)2水溶液、流速为1.0 mL/min、柱温为50 ℃和检测波长为223 nm条件下,该色谱固定相可以分离DL-天冬氨酸、DL-天冬酰胺等。同时,流动相pH值、铜离子浓度以及柱温对手性对映体的拆分有较大影响。与传统的在硅胶表面直接键合L-苯丙氨酸制得的固定相相比,所合成的固定相接枝密度高,分离效果好,对DL-天冬氨酸及DL-天冬酰胺实现了基线分离。结果表明,在手性配体交换分离模式下,固定相具有良好的拆分性能。  相似文献   

15.
An experimental injection port has been designed for split or splitless sample introduction in capillary gas chromatography; the inlet uses electronic pressure control, in order that the column head pressure may be set from the GC keyboard, and the inlet may be used in the constant flow or constant pressure modes. Alternatively, the column head pressure may be programmed up or down during a GC run in a manner analogous to even temperature programming. Using electronic pressure control, a method was developed which used high column head pressures (high column flow rates) at the time of injection, followed by rapid reduction of the pressure to that required for optimum GC separation. In this way, high flow rates could be used at the time of splitless injection to reduce sample discrimination, while lower flow rates could be used for the separation. Using this method, up to 5 μl of a test sample could be injected in the splitless mode with no discrimination; in another experiment, 2.3 times as much sample was introduced into the column by using electronic pressure programming. Some GC peak broadening was observed in the first experiment.  相似文献   

16.
设计合成了新的噻吩杂环衍生化β-环糊精手性固定相2,6-二-O-戊基-3-O-[(2-甲酰基)-噻吩基]-β-CD, 研究了色谱分离性能. 结果表明, 该固定相对各类有机化合物, 特别是芳香族位置异构体及对映异构体有较好的分离能力, 并对含多手性中心的菊酸衍生物具有一定的分离效果, 显示了较强的立体选择能力.  相似文献   

17.
Comprehensive gas chromatography is the realization of true continuous multidimensional (dual column) gas chromatography. The key requirement in the comprehensive GC experiment is that the second dimension analysis is completed in a rapid time‐frame compared to the elution of components in the first dimension, and that the two coupled dimensions represent ‘orthogonal’ analyses towards the analytes to be separated. The former normally necessitates pulsing of contiguous segments of each chromatographic band from the first to the second dimensions. The two dimensions should be in fluid communication. The comprehensive GC×GC experiment passes all the column flow from the first column to the second column, leading to no sample loss, but this also requires a suitable method for time‐ or zone‐compression of the band to be pulsed to the second column. The final pulse should be narrow, and should be delivered to the second column quickly. A simple procedure can achieve this using the cryogenic modulator that has been recently described by this group. The system uses a cryogenic trap which can be moved away from the cooled zone of the column faster than 10 ms. A fast‐acting pneumatic ram achieves this performance. The cooled column heats up to the prevailing oven temperature within 10–15 ms. Molecules as volatile as C5 alkanes or small aromatics will be fully retained by the trap within the period of modulation used for GC×GC. The technique is simple to implement and requires no special column connections. Using a gas chromatograph which allows control of external events and can acquire from a detector at 50 Hz or faster, and a timing controller for modulation, the comprehensive result can easily and effectively be achieved.  相似文献   

18.
The feasibility of coupling high-temperature liquid chromatography (HTLC) to flame ionization detection (FID) has been studied. FID parameter values (hydrogen flow-rate, air flow-rate and FID temperature), typically set in gas chromatography are rarely suitable for liquid chromatography. Best values depend obviously on the water flow rate which is defined depending on both column temperature and column internal diameter. The FID parameters were optimized according to the water flow-rate by means of an experimental design. The potential of the method is shown with some alcohol separations and the value of increasing column temperature while reducing the column diameter is highlighted.  相似文献   

19.
We report the fabrication and performance of a silicon‐on‐glass micro gas chromatography eight‐capillary column based on microelectromechanical systems technology that is 50 cm long, 30 μm wide, and 300 μm deep. According to the theory of a gas chromatography column, an even gas flow among different capillaries play a vital role in the peak broadening. Thus, a flow splitter structure is designed by the finite element method through the comparison of the velocity distributions of the eight‐capillary columns with and without splitter as well as an open tubular column. The simulation results reveal that eight‐capillary column with flow splitters can receive more uniform flow velocity in different capillaries, hence decreases the peak broadening and in turn increases the separation efficiency. The separation experiment results show that the separation efficiency of about 22 000 plates/m is achieved with the chip column temperature programmed for analysis of odorous sulfur pollutants. This figure is nearly two times higher than that of the commercial capillary column coated the similar stationary phase. And the separation time of all the components in the microcolumn is less than 3.8 min, which is faster than the commercial capillary column.  相似文献   

20.
Summary Effects of column temperature on the retention behaviour of aromatic hydrocarbons and dialkyl phthalates were investigated in capillary supercritical fluid chromatography (SFC) with carbon dioxide as the mobile phase. Negative temperature programming could partly replace pressure programming. Positive temperature programming was applicable to solutes with proper volatility, in which gas chromatography-like retention mechanism (partition process) was involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号