首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A new δ -doped In0.24Ga0.76As/GaAs pseudomorphic high electron mobility transistor (HEMT) using a graded superlattice spacer grown by molecular beam epitaxy (MBE) has been successfully fabricated and investigated. The present device structure demonstrated a more than 40% enhancement of electron mobility and 20% higher product value of electron mobility and two-dimensional electron gas (2DEG) concentration than those of the conventional HEMT with single undoped spacer under the same growth specifications. Superior device characteristics were achieved by employing the thickness-graded superlattice spacer to accommodate the lattice-mismatch-induced strain and to improve the interfacial quality. For a gate length of 1 μ m, the maximum drain-to-source saturation current density and extrinsic transconductance of the present HEMT design are 165 mA mm  1and 107 mS mm  1, respectively, at room temperature.  相似文献   

2.
An InGaAS/GaAs heterostructure transistor utilizing a gradedInxGa1  xAs channel grown by low-pressure metal-olorganic chemical vapor deposition has been demonstrated. A negative differential resistance (NDR) phenomenon is observed. Electron mobilities are significantly improved by using the graded InGaAs channel. For the In composition varying fromx =  0.25 (at the buffer–channel interface) to x =  0.1 (at the spacer–channel interface) structure, a peak extrinsic transconductance of 24.6 S mm  1(atVDS =  6.5 V,VGSstep =   0.5 mV) and a saturation current density as high as 555 mA mm  1for a gate length of 1.5 μ m are obtained.  相似文献   

3.
An i-InGaP/n-InxGa1  xAs/i- GaAs step-graded doped-channel field-effect transistor (SGDCFET) has been fabricated and studied. Due to the existence of a V-shaped energy band formed by the step-graded structure, a large output current density, a large gate voltage swing with high average transconductance, and a high breakdown voltage can be expected. In this study, first, a theoretical model and a transfer matrix technique are employed to analyze the energy states and wavefunctions in the step-graded quantum wells. Experimentally, for a 1  ×  80 μm2gate dimension device, a maximum drain saturation current density of 830 mAmm  1, a maximum transconductance of 188mSmm  1 , a high gate breakdown voltage of 34 V, and a large gate voltage swing 3.3 V with transconductance larger than 150 mSmm  1are achieved. These performances show that the device studied has a good potentiality for high-speed, high-power, and large input signal circuit applications.  相似文献   

4.
Thin-film transistor based on controllable electrostatic self-assembled monolayer single-wall carbon nanotubes (SWNTs) network has been fabricated by varying the density of nanotubes on the silicon substrate. The densities of SWNTs network have been investigated as a function of concentration and assembly time. It has been observed that the density of SWNTs network increases from 0.6 µm−2 to 2.1 µm−2, as the average on-state current (Ion) increases from 0.5 mA to 1.47 mA. The device has a current on/off ratio (Ion/Ioff) of 1.3×104 when Ion reaches to 1.34 mA.  相似文献   

5.
We demonstrated efficient red organic light-emitting diodes based on a wide band gap material 9,10-bis(2-naphthyl)anthracene (ADN) doped with 4-(dicyano-methylene)-2-t-butyle-6-(1,1,7,7-tetramethyl-julolidyl-9-enyl)-4H-pyran (DCJTB) as a red dopant and 2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10(2-benzothiazolyl)quinolizine-[9,9a,1gh]coumarin (C545T) as an assistant dopant. The typical device structure was glass substrate/ITO/4,4′,4″-tris(N-3-methylphenyl-N-phenyl-amino)triphenylamine (m-MTDATA)/N,N′-bis(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB)/[ADN:Alq3]:DCJTB:C545T/Alq3/LiF/Al. It was found that C545T dopant did not by itself emit but did assist the energy transfer from the host (ADN) to the red emitting dopant via cascade energy transfer mechanism. The OLEDs realized by this approach significantly improved the EL efficiency. We achieved a significant improvement regarding saturated red color when a polar co-host emitter (Alq3) was incorporated in the matrix of [ADN:Alq3]. Since ADN possesses a considerable high electron mobility of 3.1 × 10−4 cm2  V−1 s−1, co-host devices with high concentration of ADN (>70%) exhibited low driving voltage and high current efficiency as compared to the devices without ADN. We obtained a device with a current efficiency of 3.6 cd/A, Commission International d’Eclairage coordinates of [0.618, 0.373] and peak λmax = 620 nm at a current density of 20 mA/cm2. This is a promising way of utilizing wide band gap material as the host to make red OLEDs, which will be useful in improving the electroluminescent performance of devices and simplifying the process of fabricating full color OLEDs.  相似文献   

6.
We have performed numerical modeling of dual-gate ballistic n-MOSFETs with channel length of the order of 10 nm, including the effects of quantum tunneling along the channel and through the gate oxide. Our analysis includes a self-consistent solution of the full (two-dimensional) electrostatic problem, with account of electric field penetration into the heavily doped electrodes. The results show that transistors with channel length as small as 8 nm can exhibit either a transconductance up to 4000 mS mm  1or gate modulation of current by more than 8 orders of magnitude, depending on the gate oxide thickness. These characteristics make the devices satisfactory for logic and memory applications, respectively, although their gate threshold voltage is rather sensitive to nanometer-scale variations in the channel length.  相似文献   

7.
We have investigated the electrical and optical properties of an nBn based Type-II InAs/GaSb strained layer superlattice detector as a function of absorber region background carrier concentration. Temperature-dependent dark current, responsivity and detectivity were measured. At T = 77 K and Vb = 0.1 V, with two orders of magnitude change in doping concentration, the dark current density increased from ~0.3 mA/cm2 to ~0.3 A/cm2. We attribute this to a depletion region that exists at the AlGaSb barrier and the SLS absorber interface. The device with non-intentionally doped absorption region demonstrated the lowest dark current density (0.3 mA/cm2 at 0.1 V) with a specific detectivity D1 at zero bias equal to 1.2 × 1011 Jones at 77 K. The D1 value decreased to 6 × 1010 cm Hz1/2/W at 150 K. This temperature dependence is significantly different from conventional PIN diodes, in which the D1 decreases by over two orders of magnitude from 77 K to 150 K, making nBn devices a promising alternative for higher operating temperatures.  相似文献   

8.
InAsSb-based nBn photodetectors were fabricated on GaAs, using the interfacial misfit (IMF) array growth mode, and on native GaSb. At −0.1 V operating bias, 200 K dark current densities of 1.4 × 10−5 A cm2 (on GaAs) and 4.8 × 10−6 A cm−2 (on GaSb) were measured. At the same temperature, specific detectivity (D*) figures of 1.2 × 1010 Jones (on GaAs) and 7.2 × 1010 Jones (on GaSb) were calculated. Arrhenius plots of the dark current densities yielded activation energies of 0.37 eV (on GaAs) and 0.42 eV (on GaSb). These values are close to the 4 K bandgap of the absorption layers (0.32–0.35 eV) indicating diffusion limited dark currents and small valence band offsets. Significantly, these devices could be used for mid-infrared focal plane arrays operating within the temperature range of cost-effective thermoelectric coolers.  相似文献   

9.
The temperature and pressure dependences of the Raman spectrum of the transverse-optical mode of cubic boron nitride were calibrated for applications to a Raman spectroscopy pressure sensor in optical cells to about 800 K and 90 GPa. A significant deviation from linearity of the pressure dependence is confirmed at pressures above 20 GPa. At ambient temperature, dv/dP slopes are 3.41(7) and 2.04(7) cm−1/GPa at 0 and 90 GPa, respectively. A polynomial expression is used to fit the pressure–temperature dependence of the Raman line. The pressure dependence does not significantly change with temperature, as determined from experiments conducted up to 800 K. At 0 GPa, the dv/dP slope is 3.46(7) cm−1/GPa at 800 K. At pressures above 90 GPa, the Raman spectrum of the transverse-optical mode cannot be observed because of an overlap of the signals of cubic boron nitride and diamond used as the anvils in the high-pressure cell.  相似文献   

10.
In this work, we have experimentally studied the structure and electrochemical properties of nanocrystalline TiFe- and LaNi5-type alloys. These materials were prepared by mechanical alloying (MA) followed by annealing. The properties of hydrogen host materials can be modified substantially by alloying to obtain the desired storage characteristics. It was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo, Zr improved not only the discharge capacity but also the cycle life of these electrodes. In the nanocrystalline TiFe0.25Ni0.75, powder discharge capacity up to 155 mA h g−1 was measured (at 40 mA g−1 discharge current). On the other hand, a partial substitution of Ni by Al or Mn in LaNi5−xMx alloy leads to an increase in discharge capacity. The alloying elements such as Al, Mn and Co greatly improved the cycle life of LaNi5 material. For example, in the nanocrystalline LaNi3.75Mn0.75Al0.25Co0.25 powder, discharge capacity up to 258 mA h g−1 was measured (at 40 mA g−1 discharge current). The studies show, that electrochemical properties of Ni–MH batteries are the function of the microstructure and the chemical composition of used electrode materials.  相似文献   

11.
We investigate the existence of a band structure in GaAs/AlxGa1  xsuperlattices with cylindrical symmetry, namely GaAs/AlxGa1  xAs cylindrical superwires. These systems consists of a large number of concentric GaAs and AlxGa1  xAs alternate cylindrical shells around a central GaAs cylindrical wire. Despite the radial configuration (that breaks the translational symmetry) and the electron confinement in the central three-dimensional well, a band structure can emerge depending on the number and thickness of the cylindrical shells.  相似文献   

12.
In this paper, we examined normally-OFF N-polar InN-channel Metal insulated semiconductor high-electron mobility transistors (MISHEMTs) device with a relaxed In0.9Al0.1N buffer layer. In addition, the enhancement-mode operation of the N-polar structure was investigated. The effect of scaling in N-polar MISHEMT, such as the dielectric and the channel thickness, alter the electrical behavior of the device. We have achieved a maximum drain current of 1.17 A/mm, threshold voltage (VT) =0.728 V, transconductance (gm) of 2.9 S mm−1, high ION/IOFF current ratio of 3.23×103, lowest ON-state resistance (RON) of 0.41 Ω mm and an intrinsic delay time (τ) of 1.456 Fs along with high-frequency performance with ft/ fmax of 90 GHz/109 GHz and 180 GHz/260 GHz for TCH =0.5 nm at Vds =0.5 V and 1.0 V. The numerically simulated results of highly confined GaN/InN/GaN/In0.9Al0.1N heterostructure MISHEMT exhibits outstanding potential as one of the possibility to replace presently used N-polar MISHEMTs for delivering high power density and frequency at RF/power amplifier applications.  相似文献   

13.
Undoped CdO films were prepared by sol–gel method. Transparent heterojunction diodes were fabricated by depositing n-type CdO films on the n-type GaN (0001) substrate. Current–voltage (IV) measurements of the device were evaluated, and the results indicated a non-ideal rectifying characteristic with IF/IR value as high as 1.17×103 at 2 V, low leakage current of 4.88×10−6 A and a turn-on voltage of about 0.7 V. From the optical data, the optical band gaps for the CdO film and GaN were calculated to be 2.30 eV and 3.309 eV, respectively. It is evaluated that interband transition in the film is provided by the direct allowed transition. The n-GaN (0001)/CdO heterojunction device has an optical transmission of 50–70% from 500 nm to 800 nm wavelength range.  相似文献   

14.
《Current Applied Physics》2010,10(3):900-903
The fabrication and characterization of an organic photodetector (OPD) in the form of ITO coated glass/polycarbazole (PCz)/Al Schottky contact is reported. The device has been fabricated in our laboratory for the first time using the polymer synthesized by us. The device has been subsequently characterized in respect of electrical and optical properties in order to explore its potential for possible use as a detector in the visible region at 650 nm. It is observed that the detector exhibits a reasonably high value of peak detectivity (∼6 × 106 cm Hz1/2 W−1) near zero bias voltage at V = 0.2 V.  相似文献   

15.
Transparent glass–ceramics containing zinc–aluminum spinel (ZnAl2O4) nanocrystals doped with tetrahedrally coordinated Co2+ ions were obtained by the sol–gel method for the first time. The gels of composition SiO2–Al2O3–ZnO–CoO were prepared at room temperature and heat-treated at temperature ranging 800–950 °C. When the gel samples were heated up to 900 °C, ZnAl2O4 nanocrystals were precipitated. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. X-ray diffraction analysis shows that the crystallite sizes of ZnAl2O4 crystal become large with the heat-treatment temperature and time, and the crystallite diameter is in the range of 10–15 nm. The dependence of the absorption and emission spectra of the samples on heat-treatment temperature were presented. The difference in the luminescence between Co2+ doped glass–ceramic and Co2+ doped bulk crystal was analysed. The crystal field parameter Dq of 423 cm−1 and the Racah parameters B of 773 cm−1 and C of 3478.5 cm−1 were calculated for tetrahedral Co2+ ions.  相似文献   

16.
We have investigated the effect of strain compensation on the structural and optical properties of multiple stacked InAs quantum dots (QDs) on GaAs (0 0 1) substrates grown by atomic hydrogen-assisted RF-MBE. Strain relaxation was not observed from the reciprocal space mapping, and as a result, dislocations and coalesced islands were not observed in 50 layer-stacked QDs. Thus, the total QD density of as high as 2.5×1012 cm−2 was achieved. For QD solar cell characterization, the short-circuit current density increased from 21.0 to 26.4 mA/cm2 as the number of stacks was increased from 20 to 50. Further increase of stacks did not affect the open-circuit voltage of ∼0.7 V and diode factor of ∼1.6, which implies that high crystalline quality was maintained even after 50 layers of stacking.  相似文献   

17.
This paper deals with the current transport mechanism of solid state photoelectrochemical cells of ITO/TiO2/PVC–LiClO4/graphite as well as the physical properties of a component of a device affecting its performance. The principle of operation and a schematic energy level diagram for the materials used in the photoelectrochemical cells are presented. The device makes use of ITO films, TiO2 films, PVC–LiClO4 and graphite films as photoanode, photovoltaic material, solid electrolyte and counter electrode, respectively. The device shows rectification. The Jsc and Voc obtained at 100 mW cm−2 were 0.95 μAcm−2 and 180 mV, respectively.  相似文献   

18.
《Solid State Ionics》2006,177(19-25):1795-1798
Oxygen deficiency, thermal and chemical expansion of La0.5Sr0.5Fe1−xCoxO3−δ (x = 0, 0.5, 1) have been measured by thermogravimetry, dilatometry and high temperature X-ray diffraction. The rhombohedral perovskite materials transformed to a cubic structure at 350 ± 50 °C. The thermal expansion of the materials up to the onset of thermal reduction was 14–18 × 10 6 K 1. Above 500 °C in air (400 °C in N2), chemical expansion contributed to the thermal expansion and the linear thermal expansion coefficients were significantly higher, 16–35 × 10 6 K 1. The chemical expansion, εc, showed a maximum of 0.0045 for x = 0.5 and 0.0041 for x = 1 at 800–900 °C. The normalized chemical expansion, εcδ, was 0.036 for x = 0.5 and 0.035 for x = 1 at 800 °C. The chemical expansion can be correlated with an increasing ionic radius of the transition metals with decreasing valence state.  相似文献   

19.
We present a review of published work concerning the effect of In and N compositions on the operation wavelength, optical quality and lasing threshold in GaxIn1  xAs1  yNy/GaAs QW and double heterostructure lasers. We show that the emission wavelength in the range between 1.0 and 1.4 μ m can be obtained for a wide range of In and/or N concentrations. However, in most Fabry–Perot lasers and vertical cavity surface emitting lasers (VCSELs) reported in the literature, the threshold current density plotted as a function of the relative In/N composition (R =  (1   x) / y) indicate a broad minima for 40  < R <  70, suggesting an optimum relative composition. We also present the results of our studies concerning the optical quality of GaxIn1  xAs1  yNy/GaAs single quantum wells for R =  15. We show that the optical quality of GaInAsN can be improved while achieving a red shift in the PL spectra. This is unlike the results obtained by rapid thermal annealing or conventional annealing, which are widely employed as post-growth treatment techniques, where any increase in the PL intensity is almost always accompanied by an undesired blue shift.  相似文献   

20.
We report on photoluminescence and Raman scattering performed at low temperature (T =  10 K) on GaAs/Al0.3Ga0.7As quantum-well wires with effective wire widths ofL =  100.0 and 10.9 nm prepared by molecular beam epitaxial growth followed by holographic patterning, reactive ion etching, and anodic thinning. We find evidence for the existence of longitudinal optical phonon modes confined to the GaAs quantum wire. The observed frequency at οL10 =  285.6 cm−1forL =  11.0 nm is in good agreement with that calculated on the basis of the dispersive dielectric continuum theory of Enderleinas applied to the GaAs/Al0.3Ga0.7As system. Our results indicate the high crystalline quality of the quantum-well wires fabricated using these techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号