首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and properties of organosoluble aromatic polyimides, containing spiro‐skeletal units in the polymer backbone on the basis of the spiro‐diamine monomer, 2,2′‐diamino‐9,9′‐spirobifluorene, are described. In the case of the spiro segment, the two fluorene rings are orthogonally arranged and connected through a tetrahedral bonding carbon atom, the spiro center. As a consequence, the polymer chain is periodically zigzagged with a 90° angle at each spiro center. This structural feature minimizes interchain interactions and restricts the close packing of the polymer chains, resulting in amorphous polyimides that have good solubility in organic solvents. Compared with their fluorene‐based cardo analogues, the spirobifluorene‐based polyimides have an improved solubility. Furthermore, the main‐chain rigidity of the polyimide appears to be preserved because of the presence of the spiro structure, which restricts the free segmental mobility. As a result, these polyimides exhibit a high glass‐transition temperature (Tg's) and good thermal stability. The Tg's of these polyimides were in the range of 287–374 °C, and the decomposition temperatures in nitrogen for a 10% weight loss occurred at temperatures above 570 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3615–3621, 2002  相似文献   

2.
Several fluorene or carbazole-based dithienosiloles (DTSs) have been synthesized and their thermal, photophysical, and electrochemical properties have been systematically investigated. These compounds show high thermal stability with glass transition temperature above 110 °C as well as decomposition temperatures at ∼400 °C. Intense green emission is observed in the spectral region of 500-510 nm for all compounds (ΦPL=0.31-0.80), that is, attributed to both the 5,5′-substituents of the DTS ring and DTS-based π-π transition. Based on the emission spectra at 77 K, the triplet energy for these compounds was calculated to be within 2.1-2.2 eV, indicating that they may be used as host materials for red emitters in organic light-emitting diodes (OLEDs). All compounds exhibit reversible oxidation and possess low-lying LUMO energies, owing to the conjugated fluorene/carbazole substituents on the DTS. This along with the high thermal/electrochemical stabilities and high fluorescent quantum efficiencies makes the new DTSs compounds promising candidates for use in OLEDs as emitters, host and electron-transporting materials.  相似文献   

3.
The synthesis of three enamine hole‐transporting materials (HTMs) based on Tröger's base scaffold are reported. These compounds are obtained in a three‐step facile synthesis from commercially available materials without the need of expensive catalysts, inert conditions or time‐consuming purification steps. The best performing material, HTM3, demonstrated 18.62 % PCE in PSCs, rivaling spiro‐OMeTAD in efficiency, and showing markedly superior long‐term stability in non‐encapsulated devices. In dopant‐free PSCs, HTM3 outperformed spiro‐OMeTAD by a factror of 1.6. The high glass‐transition temperature (Tg=176 °C) of HTM3 also suggests promising perspectives in device applications.  相似文献   

4.
Two stable blue-light-emitting molecular materials containing twisted binaphthyl and peripheral triphenylamine groups were synthesized by Suzuki and Heck cross-coupling reactions. Both compounds exhibit excellent thermal and morphologic stabilities, high glass transition temperatures and good fluorescence quantum yield in films. They serve as both hole-transporting and blue emission materials in organic light-emitting diodes with good external quantum efficiencies.  相似文献   

5.
The synthesis and characterization of octavinylsilsesquioxane (OVS)-based nanocomposite dendrimers with luminescent and charge transport properties are reported. The nanocomposite dendrimers were prepared in high yield using mild Heck chemistry of mono-haloaromatic compounds with the peripheral vinylsilane groups of OVS. Attachment of 2-naphthalene, 2-(9,9-dimethyl)fluorene, and 2-(4-phenyl)-5-(1-naphthyl)-1,3,4-oxadiazole resulted in materials with blue-violet emission (360-380 nm) and photo-luminescent quantum efficiencies (PLQEs) from 1 to 26%. Blue-green emission was observed for attachment of 1-pyrene, 9-anthracene, and N1-(4-phenyl)-N1,N4,N4-triphenylbenzene-1,4-diamine with PLQEs ranging from 23 to 50%. Despite the planar characteristics of the organic dendrons, the nanocomposite dendrimers are completely amorphous and have high glass transition temperatures (Tg) ranging from 115 to 186 degrees C with decomposition temperatures (Td) exceeding 450 degrees C. Matrix-assisted laser desorption ionization-time of flight shows that unlike traditional Heck chemistry, haloaromatic compounds are adding twice across the vinylsilane groups. Finally, organic light emitting diodes using the aromatic amine-based dendrimer as hole injection layers show 55% improvement in device efficiency over traditional materials (5.16 vs. 3.24 cd A(-1)) with brightness levels exceeding 40,000 cd m(-2).  相似文献   

6.
7.
《Liquid crystals》1999,26(7):1039-1046
New low molar mass liquid crystalline vitrifying materials have been synthesized and tested for application in optical films. The molecules were based on spiro compounds derived from pentaerythritol and mesogenic groups derived from cyanobiphenylyl moieties. The resulting materials showed glass transition temperatures as high as 85 degrees C and nematic to isotropic phase transition temperatures up to 222 degrees C. Crystallization from the melt was strongly suppressed. Well-aligned, solid, birefringent layers were obtained from the materials by spincoating. Uniaxially oriented layers with an optic axis tilted with respect to the substrate were obtained by spincoating the liquid crystals on pretilt amplification layers. When an anisotropic dye was incorporated in the liquid crystals, polarizers with a tilted absorption axis were obtained. In addition, the compounds were found to be suitable as hosts for photo-induced reorientation of photo-isomerizable dyes.  相似文献   

8.
New low molar mass liquid crystalline vitrifying materials have been synthesized and tested for application in optical films. The molecules were based on spiro compounds derived from pentaerythritol and mesogenic groups derived from cyanobiphenylyl moieties. The resulting materials showed glass transition temperatures as high as 85 degrees C and nematic to isotropic phase transition temperatures up to 222 degrees C. Crystallization from the melt was strongly suppressed. Well-aligned, solid, birefringent layers were obtained from the materials by spincoating. Uniaxially oriented layers with an optic axis tilted with respect to the substrate were obtained by spincoating the liquid crystals on pretilt amplification layers. When an anisotropic dye was incorporated in the liquid crystals, polarizers with a tilted absorption axis were obtained. In addition, the compounds were found to be suitable as hosts for photo-induced reorientation of photo-isomerizable dyes.  相似文献   

9.
New highly fluorinated aromatic polyimides based on hexafluoro-2,4-toluenediamine and commercially available dianhydrides (6FDA and ODPA) were synthesized by one-pot high temperature polycondensation in benzoic acid melt. Owing to the CF3 group and fluorine atoms in the meta-linked phenylenediamine fragment, these polyimides combine good solubility in organic solvents including such a low boiling point solvent as chloroform with high glass transition temperatures (330-345 °C), thermal and thermooxidative stability (T5 is >500 °C). The highly fluorinated polyimide films (hydrogen content is ≤1%) exhibit good dielectric properties and low water absorption as well as excellent optical transparency in the UV-vis region (cut-off wavelength is 311 nm for 6FDA-based and 357 nm for ODPA-based polyimides), which is very important for optoelectronic materials.  相似文献   

10.
A selection of pyrene-based liquid crystal dimers have been prepared, containing either methylene-ether or diether linked spacers of varying length and parity. All the diether linked materials, CBOnO.Py (n=5, 6, 11, 12), exhibit conventional nematic and smectic A phases, with the exception of CBO11O.Py which is exclusively nematic. The methylene-ether linked dimer, CBnO.Py, with an even-membered spacer (n=5) was solely nematogenic, but odd-members (n=6, 8, 10) exhibited both nematic and twist-bend nematic phases. Replacement of the cyanobiphenyl fragment by cyanoterphenyl giving CT6O.Py, gave elevated melting and nematic-isotropic transition temperatures, and SmA and SmCA phases were observed on cooling the nematic phase. Intermolecular face-to-face associations of the pyrene moieties drive glass formation, and all these materials have a glass transition temperature at or above room temperature. The stability of the glassy twist-bend nematic phase allowed for its study using AFM, and the helical pitch length, PTB, was measured as 6.3 and 6.7 nm for CB6O.Py and CB8O.Py, respectively. These values are comparable to the shortest pitch of a twist-bend nematic phase measured to date.  相似文献   

11.
The design and synthesis of novel charge (hole‐ or electron‐) transport materials have been the focus of much research in recent years because of their wide variety of applications. In this study, three high molecular weight poly(arylene ether)s, 6a–c, containing naphthyl‐substituted benzidine moieties have been synthesized from carbamates derived from bisphenols. After masking with n‐propyl isocyanate, the carbamate is stable, can be readily purified by recrystallization from toluene, and can be polymerized directly with difluoro compounds under mild conditions. The resulting polymers possess high glass‐transition temperatures, excellent thermal stability, and good film‐forming properties. In comparison, the poly(arylene ether)s 6a′–c′, synthesized from unprotected bisphenol, have lower molecular weights and wider polydispersity and contain some brown impurities. Preliminary experiments show that both 6a and 6a′ can function well as hole‐transport materials in light‐emitting diodes. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2740–2748, 2000  相似文献   

12.
Suitable as highly effective polymerization catalysts is the new class of donor/acceptor metallocenes in which the rotation of the two π ligands is restricted through the formation of a dative D+→A bond (see picture). Specifically optimized substitution patterns yield excellent properties for the synthesis of high-melting, highly crystalline thermoplastic materials, amorphous thermoplastic materials with high glass transition temperatures as well as polyolefin elastomers with low glass Tg.  相似文献   

13.
A commercial set of polymers has been characterized by TG-DTA, DSC, TMA, FTIR spectroscopy and X-ray diffraction analysis (XRD). Thermal and mechanical stability, as well as the polymer glass transition temperature,T g, and melt temperature,T m, have been documented. There is a good correlation between measuredT g andT m values and published data. The degree of polymer crystallinity for polyethylene has been verified by XRD. The credibility and stability of these reference polymers is based on a comparison of their thermal properties, over a wide range of temperatures from two versions of a reference set, published in 1979 (A) and 1994 (B). The thermal properties and crystallinity of these polymers have stood the test of time and are reliable, readily available and consistent.  相似文献   

14.
Three series of new aromatic polyether sulfones bearing phenyl, p‐tolyl or carboxyl side groups, respectively, and polar pyridine main chain groups were developed. Most of the polymeric materials presented high molecular weights and excellent solubility in common organic solvents. More importantly, they formed stable, self‐standing membranes that were thoroughly characterized in respect to their thermal, mechanical and oxidative stability, their phosphoric acid doping ability and ionic conductivity. Particularly, the copolymers bearing side p‐tolyl or carboxyl groups fulfill all necessary requirements for application as proton electrolyte membranes in high temperature fuel cells, which are glass transition temperatures higher than 220 °C, thermal stability up to 400 °C, oxidative stability, high doping levels (DLs) and proton conductivities of about 0.02 S/cm. Initial single fuel cell results at high temperatures, 160 °C or 180 °C, using a copolymer bearing p‐tolyl side groups with a relatively low DLs around 200 wt % and dry H2/Air feed gases, revealed efficient power generation with a current density of 0.5 A/cm2 at 500 mV. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A series of all organic nonlinear optical (NLO) sol-gel materials based on melamines and an azobenzene dye (Disperse Orange 3; DO3) have been investigated. Different contents of DO3 were covalently bonded with the melamine-based organic network via condensation of amino and methylol groups. The optically clear samples exhibited second-order optical nonlinearity (second-harmonic coefficient d33) = 35.4 and 11.5 pm/V at 1064 and 1542 nm, respectively) after poling and curing at 220°C for 1 h. Thermal behavior of these organic NLO sol-gel systems was studied by temperature-dependent dielectric relaxation. The results indicate that the incorporation of rigid NLO-active chromophore into the melamine-based matrix leads to high rigidity and dense packing of the organic network. Subsequently, higher glass transition temperatures were obtained for the organic NLO sol-gel material with higher DO3 content. The influence of composition on the temporal stability at 100°C was also investigated. Temporal stability at 100°C was studied as a function of system composition. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2503–2510, 1999  相似文献   

16.
In this study, a simplified route to synthesize soluble, spiro‐bridged ladder‐type poly(p‐phenylene)s (spiro‐LPPP) was developed. The new, simplified synthesis route for spiro‐LPPP involves two reaction steps: a single‐stranded precursor polymer containing diaryloylbenzene building blocks was obtained by the Suzuki reaction, followed by a subsequent twofold cyclization cascade using methanesulfonic acid to form the target spiro‐LPPP. Spiro‐LPPP shows a well‐defined chemical structure, high molecular weight (Mn of 17,500 g/mol with a polydispersity index of 2.0), excellent thermal stability (5% weight loss at 370 °C), and good solubility in common organic solvents. Spiro‐LPPP emits blue light (λmax,em = 455 nm) with the high solution PL quantum yield (94%). The spectral properties of spiro‐LPPP in the solid state are very similar to the solution properties, thus indicating a low degree of intermolecular aggregation. After annealing a thin film of spiro‐LPPP to 120 °C in air for 3 to 24 h, its emission spectrum is unchanged, reflecting excellent thermooxidative stability. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5137–5143, 2009  相似文献   

17.
The controllable oxidation of spiro‐OMeTAD and improving the stability of hole‐transport materials (HTMs) layer are crucial for good performance and stability of perovskite solar cells (PSCs). Herein, we report an efficient hybrid polyoxometalate@metal–organic framework (POM@MOF) material, [Cu2(BTC)4/3(H2O)2]6[H3PMo12O40]2 or POM@Cu‐BTC, for the oxidation of spiro‐OMeTAD with Li‐TFSI and TBP. When POM@Cu‐BTC is introduced to the HTM layer as a dopant, the PSCs achieve a superior fill factor of 0.80 and enhanced power conversion efficiency 21.44 %, as well as improved long‐term stability in an ambient atmosphere without encapsulation. The enhanced performance is attributed to the oxidation activity of POM anions and solid‐state nanoparticles. Therefore, this research presents a facile way by using hybrid porous materials to accelerate oxidation of spiro‐OMeTAD, further improving the efficiency and stability of PSCs.  相似文献   

18.
张林常冠军   《中国化学》2009,27(2):428-432
以不同的二碘化合物和芳香二胺为单体,通过两种不同的方法经缩聚反应得到了系列高分子量、低分布的聚芳亚胺。其结构由FT-IR, 1H NMR1和元素分析表征。由DSC和TG测定结果可知,该系聚合物具有较高的玻璃化转变温度(Tg>150℃)和良好的热稳定性(TD>400℃)。另外,该系聚合物还表现出良好的溶解性能。  相似文献   

19.
Five new materials based on pyrazole derivatives have been synthesized and characterized as organic light‐emitting devices. This report presents a novel approach to combine pyrazole with aromatic hydrocarbons via methylene. The formed molecules exhibited twisted structures, which resulted in high glass transition temperatures (Tg), which ranged from 83.0 to 101.1°C. They also had high optical band gaps (Eg); most of their optical band gaps are determined by the absorption edge technique as 3.43 to 3.66 eV, evaluated photophysical properties of these synthesized novel chromophores, the optical properties such as maximum absorption and emission wavelengths (λ; nm), molar extinction coefficients (ε; cm?1·M?1), Stokes' shifts (ΔλST; nm), and quantum yields (φF). These compounds exhibited intense absorption bonds between 230 and 350 nm, and the effect of solvent polarity on emission of these pyrazole derivatives was also studied. In addition, they showed blue fluorescence in different solvents and bathochromic shift with the increase in the solvent polarity.  相似文献   

20.
A series of dendritic ionic liquids (DILs) based on imidazolium‐modified poly(aryl ether) dendrimers IL‐Br‐Gn (n=0–3) were synthesized by a modified convergent approach and “click” chemistry. The resulting DILs exhibited high thermal resistance with decomposition temperatures up to 270 °C and low glass transition temperatures in the range of approximately ?5–0 °C. All IL‐Br‐Gn were found to be miscible with water at any ratio and could encapsulate hydrophobic molecules. The reversible phase transfer of the DILs between the aqueous and organic phases was accomplished by simple anion exchange between the hydrophilic Br? anion and the hydrophobic bis(trifluoromethylsulfonyl)amide anion (NTf2?). IL‐Br‐Gn could be used as transporters to shuttle hydrophobic molecules between the organic and aqueous phases efficiently. The present work provides a new kind of transporting materials with potential applications in substance separation, drug delivery, and biomolecule transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号